Question

1. Consider the diatomic nitrogen molecule N2, which is rotating in the xy plane about the...

1. Consider the diatomic nitrogen molecule N2, which is rotating in the xy plane about the z axis passing through its center, perpendicular to its length. The mass of each nitrogen atom is about m= 2.40×10-26 kg, and at room temperature, the separation between the two-nitrogen atom is d = 1.32×10-10 m. A typical speed of a molecule is 4.60×1012 rad/s. If the nitrogen molecule is rotating with this angular speed about the z axis, what is its rotational kinetic energy? Show your calculation in detail. (Ans: K=2.21x10-22 J)

2. A puck on a frictionless air hockey table has a mass of 5.0×10-3 kg and is attached to a cord passing through a hole in the surface as in the figure shown. The puck is revolving at a distance 2.0 m from the hole with an angular velocity of 3.0 rad/s. The cord is then pulled from below, shortening the radius to 1.0 m. What is the new angular velocity? Show your calculation in detail. (Ans: 12 rad/s)

Homework Answers

Answer #1

* Please cross -check your numbers Once for 1 question ,

.

.

.

.

#Hi, if you are happy and find this useful please thumbs up. In case if you have any query regarding the solution please let me know in the comments section below. We can discuss. Thanks!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small block on a frictionless, horizontal surface has a mass of 2.50×10−2 kg . It...
A small block on a frictionless, horizontal surface has a mass of 2.50×10−2 kg . It is attached to a massless cord passing through a hole in the surface (Figure 1) . The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.33 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a...
A small block on a frictionless, horizontal surface has a mass of 2.90×10−2 kg . It...
A small block on a frictionless, horizontal surface has a mass of 2.90×10−2 kg . It is attached to a massless cord passing through a hole in the surface (Figure 1). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.53 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle....
A small block on a frictionless, horizontal surface has a mass of 2.50×10−2 kg . It...
A small block on a frictionless, horizontal surface has a mass of 2.50×10−2 kg . It is attached to a massless cord passing through a hole in the surface (Figure 1) .The block is originally revolving at a distance of 0.300 mfrom the hole with an angular speed of 2.99 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. -Find...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.1 kg · m2 and an angular velocity of +8.0 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.2 rad/s. The axis of rotation for this unit is the same as that for...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.7 kg · m2 and an angular velocity of +7.7 rad/s. Disk B is rotating with an angular velocity of -10.4 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 6 kg · m2 and an angular velocity of +10 rad/s. Disk B is rotating with an angular velocity of –4 rad/s and has a moment of inertia of 4kgm2. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit. The axis of rotation for this unit is the same as that...
A small block on a frictionless, horizontal surface has a mass of 2.70×10−2 kg . It...
A small block on a frictionless, horizontal surface has a mass of 2.70×10−2 kg . It is attached to a massless cord passing through a hole in the surface (Figure 1). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.33 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle....
A wheel is rotating about an axis that is in the z-direction. The angular velocity ωz...
A wheel is rotating about an axis that is in the z-direction. The angular velocity ωz is -6.00 rad/s at t = 0, increases linearly with time, and is +4.00 rad/s at t = 19.0 s . We have taken counterclockwise rotation to be positive. 1- How long is the time interval during which the speed of the wheel is increasing? 2- How long is the time interval during which the speed of the wheel is decreasing? 3- What is...
A solid disk is rotating about a frictionless axle with an initial angular velocity of 15...
A solid disk is rotating about a frictionless axle with an initial angular velocity of 15 rad/s in a clockwise direction. The disk has a mass of 5.0 kg and a radius of 15 cm. A force of 20 N is applied to the disk for 0.5 s. This force is applied in a direction tangent to the edge of the disk that causes the disk to increase speed in the clockwise direction. I (disk) = ½ MR^2 a. What...
A body is initially (at t=0s) rotating about a z-axis as shown below. Its initial angular...
A body is initially (at t=0s) rotating about a z-axis as shown below. Its initial angular speed is 8.50 rad/s. It's rotation is slowing at a constant rate of 0.150 rad/s^2. a) How long does it take to stop? b) How many revolutions did it make in this time period? c) If the point shown is 17.0 cm from the z-axis, what was the initial speed at this point and what was the initial acceleration magnitude at this point?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT