Question

A particle with charge 8

A particle with charge 8

Homework Answers

Answer #1

he force direction is always away from a + point charge, and towards a - point charge.

Here all charges are +.

Also the third charge at x=2cm is exactly midway so r = 6cm = 0.06m in both cases.
This simplifies the maths.

At x=2 the force from the 8?C charge is to the right
Its magnitude is k.Q1.Q3/r^2 = k*8*5*10^-12 / .0036

At x=2 the force from the 3?C charge is to the left
Its magnitude is k.Q2.Q3/r^2 = k*3*5*10^-12 / .0036

So the net force is
k*(40 - 15) * 10^-12 / .0036 = 62.4 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with charge -3.12 nC is at the origin, and a particle with negative charge...
A particle with charge -3.12 nC is at the origin, and a particle with negative charge of magnitude Q is at x = 52.0 cm. A third particle with a positive charge is in equilibrium at x = 19.6 cm. What is Q? answer in nC
A stationary particle of charge q = 2.2 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.2 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.5 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.5 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.5 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.6 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.8 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.3 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.8 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle...
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle is given an initial horizontal velocity that is due north and has magnitude 4.00 x 10^4 m/s. What are the magnitude and direction of the minimum mgnetic field that will keep the particle moving in the earth's gravitational field in the same horizontal, northward direction? Conceptually explain why the B-field is in this direction.
In the figure particle 1 of charge q1 = 1.08 μC and particle 2 of charge...
In the figure particle 1 of charge q1 = 1.08 μC and particle 2 of charge q2 = -2.94 μC, are held at separation L = 9.1 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a)x and (b)y coordinates of particle 3?
In the figure particle 1 of charge q1 = 0.91 μC and particle 2 of charge...
In the figure particle 1 of charge q1 = 0.91 μC and particle 2 of charge q2 = -3.09 μC, are held at separation L = 10.5 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a)x and (b)y coordinates of particle 3?
In the figure particle 1 of charge q1 = 0.94 μC and particle 2 of charge...
In the figure particle 1 of charge q1 = 0.94 μC and particle 2 of charge q2 = -2.91 μC, are held at separation L = 10.6 cm on an x axis. If particle 3 of unknown charge q3 is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a)x and (b)y coordinates of particle 3?