Question

Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V...

Calculate the total change of entropy for an ideal monatomic gas expanding from a volume V into a volume 2V via: i) Free expansion ii) Quasi-static isothermal expansion iii) Quasi-static adiabatic expansion; iv) Do the results of (iii) surprise you? Comment on what these results mean in terms of reversible and irreversible processes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the change in entropy for one mole of ideal gas which expands from an initial...
Calculate the change in entropy for one mole of ideal gas which expands from an initial volume of 2 L and initial temperature of 500 K to a final volume of 6 L under the following conditions. P(initial) refers to the pressure when T(initial)= 500K, V(initial)= 2 L. a) Irreversible expansion against a constant pressure of Pinitial/2 b) Irreversible expansion against a vacuum...a 'free expansion'. c) Adiabatic irreversible expansion against a constant pressure of Pfinal d) Adiabatic reversible expansion
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2...
A Joule expansion refers to the expansion of a gas from volume V1 to volume V2 against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which is...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to...
Thermodynamics Question A Joule expansion refers to the expansion of a gas from volume V1 to volume V2against no applied pressure, and is sometimes also called a free expansion. There is no work done, because the P of -PdV is zero. By insulating the system, this process can be done adiabatically, so there is no change in heat. For an ideal gas, the adiabatic process is also isothermal, so there is no change in thermodynamic energy, ∆U = 0 (which...
Consider n moles of an ideal monatomic gas being taken once through the Carnot cycle of...
Consider n moles of an ideal monatomic gas being taken once through the Carnot cycle of a thermal engine (motor), consisting of two isothermal processes 1-2, 3-4 at temperatures T1 = 400K and T2 = 300K and two adiabatic processes 2-3 and 4-1. Suppose that all processes are reversible. a) Sketch the graph of the cycle in P-V diagram. b) Calculate the heats of the processes 1-2, 3-4. c) Prove that the efficiency of the engine depends only on the...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
Two ideal gas systems undergo reversible expansion starting from the same P and V. At the...
Two ideal gas systems undergo reversible expansion starting from the same P and V. At the end of the expansion, the two systems have the same volume. The pressure in the system that has undergone adiabatic expansion is lower than that in the system that has undergone isothermal expansion. Explain this observation without using equations.
An ideal gas at 300 K has a volume of 15 L at a pressure of...
An ideal gas at 300 K has a volume of 15 L at a pressure of 15 atm. Calculate the: (1)the final volume of the system, (2) the work done by the system, (3) the heat entering thesystem, (4) the change in internal energy when the gas undergoes a.- A reversible isothermal expansion to a pressure of 10 atm b.- A reversible adiabatic expansion to a pressure of 10 atm.
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle...
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle begins at P1=1.00 atm and V1=24.6L. The gas is heated at constant volume to P2=2.00atm. It then expands at constant pressure until its volume is 49.2L. The gas is then cooled at constant volume until its pressure is again 1.00 atm. It is then compressed at constant pressure to its original state. All the steps are quasi-static and reversible. Calculate the TOTAL work done...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of gas with an initial pressure of 350 kPa and an initial volume of 1.4 m3 . Find the pressure of the gas after it expands adiabatically to a volume of 2.8 m3 . Pf= 110 kPa Find the temperature of the gas after it expands adiabatically to a volume of 2.8 m3 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT