Question

Kinematics Examples: A) A cat has a time dependent position given by x(t) = 4.50 m...

Kinematics Examples:

A) A cat has a time dependent position given
by

x(t) = 4.50 m + (3.20 m/s^2) t^2 - (1.75 m/s^3) t^3

Find Velocity as function of time?

Find acceleration as a function of time?

Find the position velocity, and acceleration of the cat at t = 3.00 s?

Find average velocity and average acceleration for the 1st 3.00s?

Find the position of the cat when it first changes direction?

B) A robot starts at X0 = 4.00m and has a time dependent velocity given by:

Vx (t) = 7.65 m/s - (3.71 m/s^3) t^2

Find the position as a function of time?
Find acceleration as a function of time?

Find the position, velocity, and acceleration at t= 2.50 s?

Find the average velocity of the robot for the first 2.50s?

Find the average acceleration of the robot from t= 1.00s to t= 2.50s ?

Is the robot speeding up or slowing down at t= 2.50s? Explain.

C) A mouse starts at X0= +6.50 m. It is initially moving left at V0x = - 2.11 m/s. It has a time dependent acceleration given by:

ax (t) = (4.75 m/s^2) + (1.50 m/s^4) t^2

Find the position, velocity, and acceleration of the mouse at t= 5.00s?

Find the average acceleration from t= 2.00s to t= 5.00s ?

Is the mouse speeding up or slowing down at t= 0.300s? Explain

At what time does the mouse change direction?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The position of a bird in the xy-plane is given by ?⃗ = (3.0?−∝ ?)?̂+...
1. The position of a bird in the xy-plane is given by ?⃗ = (3.0?−∝ ?)?̂+ ?? 2 ?̂where ∝= 1.6 ?/? and ? = 0.8 ?/? 2 . a) What are Vx(t) and Vy(t), x and y components of the velocity of the bird as a function of time? b) What is the bird’s net velocity at 3.0 s (magnitude and direction)? c) What are ax(t) and ay(t), x and y components of the acceleration of the bird as...
The position of a particle as a function of time is given by x(t) = (t...
The position of a particle as a function of time is given by x(t) = (t + 2t^2 + 3t^3) m. What is the average velocity between t = 2.0 s and 5.0 s? a. 123.0 m/s b. 132.0 m/s c. 213.0 m/s d. 321.0 m/s
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of car? Answer: initial position ______ m; initial velocity _____ m/s; acceleration ______ m/s2 b. What distance does the car travel during the first 1.0 s? Answer:_____ m c. What is the average velocity of the car between t = 1.0 s and t =...
The position of a car as a function of time is given by x = (50...
The position of a car as a function of time is given by x = (50 m) + (-5.0 m/s) t + (-10 m/s2) t2. a. What are the initial position, initial velocity, and acceleration of the car? b. What distance does the car travel during the first 1.0 s? c. What is the average velocity of the car between t = 1.0 s and t = 2.0 s?
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation...
2). A particle moving on the x-axis has a time-dependent position (t) given by the equation x (t) = ct - bt^3. Where the units of x are meters (m) and time t in seconds (s). (Hint: you must get derivatives, you need graph paper) (a) So that the position in x has units of meter which are the units of the constants c and b? Sic = 5yb = 1.Desdeti = 0satf = 3s. (b) What is its displacement,...
An electron, a neutron(which has zero charge) and a proton are in an electric field generated...
An electron, a neutron(which has zero charge) and a proton are in an electric field generated by charged plates which points in the +x direction. The three particles are sufficiently far apart that their forces on each other are negligible. Assume also that forces other than the electrostatic ones on the three particles are negligible. We know that: (Choose the correct answers) the acceleration of the electron is in the +x direction. the x coordinate of the electron is less...
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the...
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.) (a)     t = 0 position       m velocity     m/s acceleration     m/s2 (b)     t = 0.500 s position     m velocity     m/s acceleration     m/s2 (c)     t = 2.00 s position     m velocity     m/s acceleration     m/s2
A simple harmonic oscillator's position is given by y(t) = (0.860 m)cos(10.2t − 5.65). Find the...
A simple harmonic oscillator's position is given by y(t) = (0.860 m)cos(10.2t − 5.65). Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.) (a)     t = 0 position     m velocity     m/s acceleration     m/s2 (b)     t = 0.500 s position     m velocity     m/s acceleration     m/s2 (c)     t = 2.00 s position     m velocity     m/s acceleration     m/s2