Question

A spherical shell of mass M is released from rest and rolls without slipping down a...

A spherical shell of mass M is released from rest and rolls without slipping down a 40.00 sloped hill. Determine the center of mass speed of the object when the ball has rolled 6.00 meters along the hill. Ignore any thickness of the shell. Please show work and possible thoughts

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hollow spherical shell with mass 2.45 kg rolls without slipping down a slope that makes...
A hollow spherical shell with mass 2.45 kg rolls without slipping down a slope that makes an angle of 30.0 degrees with the horizontal. Find the minimum coefficient of friction μ needed to prevent the spherical shell from slipping as it rolls down the slope.
A thin spherical shell of radius 0.37 meters rolls down a 6.13 meter high hill without...
A thin spherical shell of radius 0.37 meters rolls down a 6.13 meter high hill without slipping. At the bottom of this hill, what will the velocity of the spherical shell be?
A hollow spherical shell with mass 2.35 kg rolls without slipping down a slope that makes...
A hollow spherical shell with mass 2.35 kg rolls without slipping down a slope that makes an angle of 35.0 ? with the horizontal. Find the magnitude of the acceleration acm of the center of mass of the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .Find the magnitude of the frictional force acting on the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .
A hollow spherical shell with mass 2.15 kg rolls without slipping down a slope that makes...
A hollow spherical shell with mass 2.15 kg rolls without slipping down a slope that makes an angle of 39.0 ∘ with the horizontal. A. Find the magnitude of the acceleration acm of the center of mass of the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 . B. Find the magnitude of the frictional force acting on the spherical shell. Take the free-fall acceleration to be g = 9.80 m/
A basketball starts from rest and rolls without slipping down a hill. The radius of the...
A basketball starts from rest and rolls without slipping down a hill. The radius of the basketball is 0.23 m, and its 0.625 kg mass is evenly distributed in its thin shell. The hill is 50 m long and makes an angle of 25° with the horizontal. How fast is it going at the bottom of the hill? Group of answer choices 10.7 m/s 12.3 m/s 15.8 m/s 14.4 m/s 17.2 m/s
A basketball starts from rest and rolls without slipping down a hill. The radius of the...
A basketball starts from rest and rolls without slipping down a hill. The radius of the basketball is 0.23 m, and its 0.625 kg mass is evenly distributed in its thin shell. The hill is 50 m long and makes an angle of 25° with the horizontal. How fast is it going at the bottom of the hill? Group of answer choices 17.2 m/s 14.4 m/s 10.7 m/s 12.3 m/s 15.8 m/s
A hoop I = M R2 starts from rest and rolls without slipping down an incline...
A hoop I = M R2 starts from rest and rolls without slipping down an incline with h = 7.0 m above a level floor. The translational center-of-mass speed vcm of the hoop on the level floor is
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down an incline, starting from rest from a height 1.0 m. a. What is the speed of the sphere when it reaches the bottom of the incline? b. From what height must a solid disk with the same mass and radius be released from rest to have the same velocity at the bottom? It also rolls without slipping.
A 1.6 m radius cylinder with a mass of 8.6 kg rolls without slipping down a...
A 1.6 m radius cylinder with a mass of 8.6 kg rolls without slipping down a hill which is 5.6 meters high. At the bottom of the hill, what percentage of its total kinetic energy is invested in rotational kinetic energy?
A ball rolls down a ramp without slipping. It starts from rest. (a) Specify the mass...
A ball rolls down a ramp without slipping. It starts from rest. (a) Specify the mass and radius of the ball, and the height and length of the ramp. (b) Calculate the moment of inertia of the ball . (c) Calculate the potential energy of the ball at the top of the ramp. (d) Calculate the linear kinetic energy and rotational kinetic energy of the ball. (e) Determine the angular acceleration of the ball. (f) Determine how long the ball...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT