Question

A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t...

A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t is in seconds, velocity is in m/s^2, A = 1.18m/s^2 and B = -0.61m/s^3. What is the distance traveled, in m, by the particle between times t0=1.0 and t1=3.0? please show steps and calculations

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is in seconds, v is in m/s, A= 0.85 m/s2, and B= -0.69 m/s3. Acceleration= -0.53 m/s2 @ t=0 and the Displacement= -2.58 m b/w t=1s to t=3s. What is the distance traveled in meters, by the particle b/w times t=1s and t=3s?
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
Two particles move along an x axis. The position of particle 1 is given by x...
Two particles move along an x axis. The position of particle 1 is given by x = 10.0t2 + 6.00t + 4.00 (in meters and seconds); the acceleration of particle 2 is given by a = -9.00t (in meters per seconds squared and seconds) and, at t = 0, its velocity is 24.0 m/s. When the velocities of the particles match, what is their velocity?
A particle is launched from the origin along the x-axis at an initial velocity of 2...
A particle is launched from the origin along the x-axis at an initial velocity of 2 m/s. If the particle is accelerated according to the formula a(t) = -sin(t) where t is in seconds, what is the particle's position at time t = pi seconds?
“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct)...
“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct) ĵ where a=1.4 m/s, b=6.2 m/s³, and c=2.2 m/s². When t= 0 seconds, the butterfly is located at the origin. Calculate the butterfly’s position vector and acceleration vector as functions of time. What is the y-coordinate as it flies over x = 0 meters after t = 0 seconds?”
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18)....
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18). Find the distance that the particle has traveled after t=9 seconds if it started at t=0 seconds.
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during the time interval [0, 1].
The velocity of a particle constrained to move along the x-axis as a function of time...
The velocity of a particle constrained to move along the x-axis as a function of time t is given by: v(t)v(t)=−(−(14/t0)sin(t/t0)/t0)sin(t/t0). Part A: If the particle is at x=8 m when t=0, what is its position at t = 9t0. You will not need the value of t0 to solve any part of this problem. If it is bothering you, feel free to set t0=1everywhere. Part B: Denote instantaneous acceleration of this particle by a(t). Evaluate the expression 8 +v(0)t+a(0)t2/2+v(0)t+a(0)t2/2...
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2...
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2 – 7t + 10) m/s, where t is in s. a) Graph the velocity function for t in the interval 0s-6s. b) At what times does the particle reach its turning points? c) Find and graph the position function x (t). d) Find and graph the acceleration function a(t). e) What is the particle’s acceleration at each of the turning points?