Question

Two positively charged particles, each with charge Q, are held at positions (-A, 0) and (A,...

Two positively charged particles, each with charge Q, are held at positions (-A, 0) and (A, 0) as shown in the following figure. A third positively charged particle with charge q is placed at (0, H). Find an expression for the net electric force on the third particle with charge q. Show that the two charges Q behave like a single charge 2Q located at the origin when the distance H is much greater than A.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two charged particles are located on the x-axis. The particle with charge q1 = 5.30 µC...
Two charged particles are located on the x-axis. The particle with charge q1 = 5.30 µC is located at x1 = 1.25 cm and the particle with charge q2 = −2.46 µC is located at x2 = −1.80 cm. (a) Determine the total electric potential (in V) at the origin. V (b) Determine the total electric potential (in V) at the point with coordinates (0, 1.50 cm). V
The charges and coordinates of two charged particles held fixed in an xy plane are q1...
The charges and coordinates of two charged particles held fixed in an xy plane are q1 = 2.74 μC, x1 = 5.02 cm, y1 = 0.712 cm and q2 = -3.79 μC, x2 = -2.30 cm, y2 = 1.88 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°;180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge...
The charges and coordinates of two charged particles held fixed in an xy plane are q1...
The charges and coordinates of two charged particles held fixed in an xy plane are q1 = 3.09 μC, x1 = 3.70 cm, y1 = 0.604 cm and q2 = -5.45 μC, x2 = -2.27 cm, y2 = 1.52 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°;180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are...
1a) Two identical positively charged particles experience electric forces of magnitude 209 N when they are separated by 4 cm. Calculate the charge on each particle. b) Two electrons and a proton are placed on corners of a square with sides 25 cm. The proton is opposite the empty corner. What is the magnitude of the electric force on the proton?
Two particles A and B having charges 8×10−6C and −2×10−6 respectively are held fixed with a...
Two particles A and B having charges 8×10−6C and −2×10−6 respectively are held fixed with a separation of 20cm. Where should a third charged particle C be placed so that it does not experiences a net electric force
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K |QQ'|/d2 where K=1/4πϵ0 , and ϵ0=8.854×10-12 C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -17.0 nCn, is located at X1 = -1.680 m ; the second charge, q2 = 30.0 nC , is at the origin (x = 0). What is (Fnet3)x, the x-component...
Three charged particles are located at the corners of an equilateral triangle as shown in the...
Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.80 µC, and L = 0.790 m). Calculate the total electric force on the 7.00-µC charge. magnitude N direction ° (counterclockwise from the +x axis) Three charged particles lie in the x y coordinate plane at the vertices of an equilateral triangle with side length L. Positive charge q is at the origin. A charge of 7.00 µC is...
Two charge particles, +2q and -3q are on an axis at x = -10 and x...
Two charge particles, +2q and -3q are on an axis at x = -10 and x = 30 respectively. At one point, a third charged particle can be placed such that the net force acting on it would be zero. a) Calculate the location where the third charge should be placed to create this situation? b) Should the third charge be positive or negatively charged? Explain your reasoning.
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated...
Coulomb's law for the magnitude of the force F between two particles with charges  Q and  Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -14.5 nC , is located at x1 = -1.655 m ; the second charge, q2 = 33.5 nC , is at the origin (x=0.0000). What is the net force exerted by these two charges on...
Coulomb's law for the magnitude of the force F between two particles with charges Q and...
Coulomb's law for the magnitude of the force F between two particles with charges Q and Q′ separated by a distance d is |F|=K|QQ′|d2, where K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space. Consider two point charges located on the x axis: one charge, q1 = -10.0 nC , is located at x1 = -1.695 m ; the second charge, q2 = 31.0 nC , is at the origin (x=0.0000). What is the net force exerted by these two...