Question

A spring is attached to a wall, and a 0.50 kg block is attached to the...

A spring is attached to a wall, and a 0.50 kg block is attached to the other end of the spring. The spring-block system sits on a frictionless surface so that the block is able to oscillate without losing energy. The spring constant of the spring is k = 25 N/m. The block is pushed so that it compresses the spring by 20 cm beyond its equilibrium position. The block is released from rest at exactly the same time as a stopwatch begins counting time.

I recommend including a plot of x-versus-t (a plot of displacement of the block versus time) as part of your answer, and use your sketch as part of the justification for your result.

a) At what time does the block first reach a point where it is halfway between its initial position (its position when the stopwatch began counting time), and the equilibrium position of the spring-mass system?


b) What is the position of the block 3.2 seconds after the stopwatch began counting time?

Homework Answers

Answer #1

Displacement equation of block is

Equilibrium position of the block is taken as origin, initial position of block is

Angular frequency of block is

a)

When the block reaches halfway between initial position and equilibrium position ,

b)

At time

That is the block is to the left of equilibrium position.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal spring is attached to a wall at one end and a mass at the...
A horizontal spring is attached to a wall at one end and a mass at the other. The mass rests on a frictionless surface. You pull the mass, stretching the spring beyond the equilibrium position a distance A, and release it from rest. The mass then begins to oscillate in simple harmonic motion with amplitude A. During one period, the mass spends part of the time in regions where the magnitude of its displacement from equilibrium is greater than (0.17)A—...
A block with a mass of 0.300 kg attached to one end of a spring can...
A block with a mass of 0.300 kg attached to one end of a spring can oscillate on a frictionless, horizontal surface. Initially the block is displaced 0.120 m from its equilibrium position and then it is released. After 0.152 s the block has not passed through the equilibrium position and is located 0.0371 m from its equilibrium position. Determine the spring constant of the spring.
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block of mass m = 2.6kg is attached to a single spring of spring constant...
A block of mass m = 2.6kg is attached to a single spring of spring constant k = 3.5?? and allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is ?=0?. At time ?=0? the mass is at position ?=−0.1? and moving with x-component of velocity ??=2.2??. What is mass's kinetic energy at time ?=7.8s? Answer in Joules.
A block of unknown mass is attached to a spring with a spring constant of 5.50...
A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 27.0 cm/s. (a) Calculate the mass of the block. (b) Calculate the period of the motion. (c) Calculate the maximum acceleration of the block.
A block attached to a horizontal spring is pulled to the right a distance of 19.0...
A block attached to a horizontal spring is pulled to the right a distance of 19.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f = 1.28 Hz. Assuming that positive is to the right, determine at 0.300 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer.)
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT