Question

(a) A charged particle decelerates as it moves from location A to location B. If VA...

(a) A charged particle decelerates as it moves from location A to location B. If

VA = 260 V and VB = 140 V, what is the sign of the charged particle?

positive or negative?


Review motion of positively and negatively charged particles as they move from high to low potential or from low to high potential.
(b) A proton gains electric potential energy as it moves from point 1 to point 2. Which of the following is true regarding the electric potential at points 1 and 2?

V1 = V2

V1 > V2

V1 < V2

Homework Answers

Answer #1

(a) VA = 260 V and VB = 140 V. A charged particle moving from location A to location B decelerates. Thus the particle is negatively charged.

A positively charged particle moving from high to low potential region accelerates where as a negatively charged particle moving from high to low potential region decelerates. For better understanding, you can look at these potentials this way, higher potential region is more positive than the lower potential region. Thus, repels the positively charged particle moving towards it, decelerating it. And a negatively charged particle moving towards high potential region is attracted towards it, because of which it gets accelerated.

(b) A proton gains electric potential energy as it moves from point 1 to 2. Which means, V = V2 -V1 is positive. Thus, V1 < V2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The potential at location A is 562 V. A positively charged particle is released there from...
The potential at location A is 562 V. A positively charged particle is released there from rest and arrives at location B with a speed vB. The potential at location C is 1180 V, and when released from rest from this spot, the particle arrives at B with twice the speed it previously had, or 2 vB. Find the potential at B.
The potential at location A is 362 V. A positively charged particle is released there from...
The potential at location A is 362 V. A positively charged particle is released there from rest and arrives at location B with a speed vB. The potential at location C is 795 V, and when released from rest from this spot, the particle arrives at B with twice the speed it previously had, or 2vB. Find the potential at B. V
An electron is at the origin. (a) Calculate the electric potential VA at point A, x...
An electron is at the origin. (a) Calculate the electric potential VA at point A, x = 0.860 cm. V (b) Calculate the electric potential VB at point B, x = 1.020 cm. V What is the potential difference VB - VA? V (c) Would a negatively charged particle placed at point A necessarily go through this same potential difference upon reaching point B? Explain
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where...
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction.] A. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential difference...
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point...
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point A, where the electric potential is VA = 210 V , to point B, where the electric potential VB = 750 V is greater than the potential at point A. The electric force is the only force acting on the particle. The particle has a speed of 4.60 m/s at point A.
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. part A: The particle, initially at rest, is acted upon only by the electric force and moves from point a to point balong the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.44×10−18 J . In what direction and through what potential difference Vb−Va...
a) A particle (charge = 70 μC) moves in a region where the only force on...
a) A particle (charge = 70 μC) moves in a region where the only force on it is an electric force. As the particle moves 25 cm from point A to point B, its kinetic energy increases by 4.2 mJ. Determine the electric potential difference, VB - VA. (in Volts) b) Points A [at (3, 1) m] and B [at (8, 8) m] are in a region where the electric field is uniform and given by E→=(4iˆ+3jˆ)E→=4i^+3j^A- VB? (in Volts)
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6...
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 83 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA,...
In the figure a charged particle (either an electron or a proton) is moving rightward between...
In the figure a charged particle (either an electron or a proton) is moving rightward between two parallel charged plates separated by distance d = 9.30 mm. The plate potentials are V1 = –63.0 V and V2 = –46.0 V. The particle is slowing from an initial speed of 85.0 km/s at the left plate. (a) Is the particle an electron or a proton? (b) What is its speed just as it reaches plate 2?