Question

A system consists of two particles. The first particle has mass m1 = 2.0 kg and...

A system consists of two particles. The first particle has mass m1 = 2.0 kg and a velocity of (-5.0 i+1.0j) m/s, and the second particle has mass m2 = 1.00 kg and a velocity of (1.0i - 5.0j)    m/s. A:) What is the velocity of the center of mass of this system?  
B:) what is the total momentum of this system?

Homework Answers

Answer #1

The velocity of center of mass is given by

Where   

Where is mass of the particle, and is tthe velocity of particle.

For the given problem,

(in m/s)

This is the velocity of center of mass of the system.

(B)

And the momentum of the system is

(in kg.m/s)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system of two particles in the xy plane: m1 = 1.95 kg is at...
Consider a system of two particles in the xy plane: m1 = 1.95 kg is at the location r with arrow1 = (1.00î + 2.00?) m and has a velocity of (3.00î + 0.500?) m/s; m2 = 3.15 kg is at r with arrow2 = (?4.00î ? 3.00?) m and has velocity (3.00î ? 2.00?) m/s. (a) Plot these particles on a grid or graph paper. Draw their position vectors and show their velocities. (Include the center of mass of...
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s...
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s has a completely inelastic collision with a second particle of mass m2 = 3.68 kg with an initial velocity v2 = 3.06 m/s. What is the velocity of the combined particles immediately after the collision? (Express your answer in vector form.)
Consider a system consisting of three particles: m1 = 4 kg, 1 = < 11, -6,...
Consider a system consisting of three particles: m1 = 4 kg, 1 = < 11, -6, 12 > m/s m2 = 2 kg, 2 = < -13, 7, -4 > m/s m3 = 3 kg, 3 = < -29, 34, 19 > m/s (a) What is the total momentum of this system? tot = ______ kg · m/s (b) What is the velocity of the center of mass of this system? cm = ______ m/s (c) What is the total...
A particle with mass M0 is at rest. It decays into two particles with masses m1...
A particle with mass M0 is at rest. It decays into two particles with masses m1 = 6.64 × 10-27 kg and m2 = 5.20 × 10-26 kg. After the decay, m1 moves at 0.95 c. (a) What is the speed of m2 after the decay? (b) What is M0? Answers: (a) 1.09 × 10^8 m/s (b) 7.71 × 10^−26 kg
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
Particle 1 has a mass of m1 = 3.30 × 10-6 kg, while particle 2 has...
Particle 1 has a mass of m1 = 3.30 × 10-6 kg, while particle 2 has a mass of m2 = 6.30 × 10-6 kg. Each has the same electric charge. These particles are initially held at rest, and the two-particle system has an initial electric potential energy of 0.140 J. Suddenly, the particles are released and fly apart because of the repulsive electric force that acts on each one (see the figure). The effects of the gravitational force are...
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...
Three particles have the following masses and center of mass coordinates: m1 = 2.50 kg, (0.150...
Three particles have the following masses and center of mass coordinates: m1 = 2.50 kg, (0.150 m, 0.420 m), m2 = 1.50 kg, (0.120 m, -0.350 m), and m3 = 2.00 kg, (-0.410 m, 0.520 m). The coordinate of the center of mass of the particle system is: a. (0.04 m, -0.261 m) b. (0.04 m, -0.261 m) c. (- 0.04 m, -0.261 m) d. (- 0.04 m, 0.261 m)