Question

Two blocks, of masses m and M, lie in contact on a horizontal surface. The contact...

Two blocks, of masses m and M, lie in contact on a horizontal surface. The contact surfaces of each block are coated with an explosive. Upon detonation, this explosive releases a fixed amount of energy E. Assuming all this chemical PE is converted to the mechanical KE of the blocks, calculate the speed u of the block m, and the speed v of the block M immediately after detonation. Give numerical values for u and v if m = 6kg, M = 10kg, and E = 5160J (this is the energy which would be released by about 1.24g of TNT).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface....
Two blocks are held together, with a compressed spring between them, on a horizontal frictionless surface. When the system is released, the spring pushes the blocks apart and they then move off in opposite directions. The spring remains behind, and you can assume that all of its energy is transformed to the kinetic energy of the blocks. Find the kinetic energy of block A HomeworkUnanswered The mass of block A is 3.00 times the mass of block B, and the...
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface....
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface. Between them is a spring with spring constant 26 N/m, which is not attached to either block The two blocks are pushed together, compressing the spring by 0.338 meter, after which the system is released from rest. What is the final speed of the block A? (Hint: you will need to use both conservation of energy and conservation of momentum to solve this problem)....
Consider two blocks on a horizontal plane where block one has a small mass (m) with...
Consider two blocks on a horizontal plane where block one has a small mass (m) with some velocity (v) while block two has a large mass (M) and a spring with a spring constant of (k). Have block one collide with the spring of block two and stick so that the two blocks are allowed to oscillate. Ignore friction. 1) Find the internal energy change in the system 2) Now assume block two is instead an un-moving wall so that...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 734 N/m. The block comes to rest after compressing the spring 4.15 cm. Find the spring potential, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, (e) 4.00 cm
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s,...
A 2.00 kg block slides on a frictionless, horizontal surface with a speed of 5.10 m/s, until colliding head-on with, and sticking to, a 1.00 kg block at rest. A) Find the speed of the combination after the collision. B) The two blocks continue to slide together until coming in contact with a horizontal spring and eventually brought to rest. If the blocks compress the spring 10.0 cm, find the spring constant of the spring. C) How much work did...
A block with mass m is undergoing SHM on a horizontal, frictionless surface while attached to...
A block with mass m is undergoing SHM on a horizontal, frictionless surface while attached to a light, horizontal spring that has force constant k. You use motion sensor equipment to measure the maximum speed of the block during its oscillations. You repeat the measurement for the same spring and blocks of different masses while keeping the amplitude A at a constant value of 18.0 cm. You plot your data as v2max versus 1/m and find that the data lie...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 54.5 J and a maximum displacement from equilibrium of 0.285 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 41.4 J and a maximum displacement from equilibrium of 0.284 m. (a) What is the spring constant? N/m   (b) What is the kinetic energy of the system at the equilibrium point? J   (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg   (d) What is the speed of the block when its displacement is 0.160 m? m/s  ...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 39.0 J and a maximum displacement from equilibrium of 0.260 m. (a) What is the spring constant? ___N/m (b) What is the kinetic energy of the system at the equilibrium point? ___J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? ___kg (d) What is the speed of the block when its displacement is 0.160 m? ___m/s...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT