Question

a 6.4 kg disc rotates with initial angular velocity 18700rpm. a worker shuts off the electrical...

a 6.4 kg disc rotates with initial angular velocity 18700rpm. a worker shuts off the electrical switch and the disk comes to rest with constant acceleration produced by frction torque of 1.4 m*N. the radius of the disk is 0.23 m. moment of inercia: mR^2/2. calculate the time of the first 390 full rotations of the disk, after switch shuts off.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A compact disc rotates from rest up to an angular speed of 31.6 rad/s in a...
A compact disc rotates from rest up to an angular speed of 31.6 rad/s in a time of 0.913 s. (a) What is the angular acceleration of the disc, assuming the angular acceleration is uniform? ______________ rad/s2 (b) Through what angle does the disc turn while coming up to speed? rad (c) If the radius of the disc is 4.45 cm, find the tangential speed of a microbe riding on the rim of the disc. ____________ m/s (d) What is...
Starting from rest, a 12-cm-diameter compact disk takes 3.2 s to reach its operating angular velocity...
Starting from rest, a 12-cm-diameter compact disk takes 3.2 s to reach its operating angular velocity of 2500 rpm . Assume that the angular acceleration is constant. The disk's moment of inertia is 2.5×10−5kgm2. How much torque is applied to the disk? How many revolutions does it make before reaching full speed?
Starting from rest, a 12-cm-diameter compact disk takes 2.7 s to reach its operating angular velocity...
Starting from rest, a 12-cm-diameter compact disk takes 2.7 s to reach its operating angular velocity of 2300 rpm . Assume that the angular acceleration is constant. The disk's moment of inertia is 2.5×10−5kgm2. Part A) How much torque is applied to the disk? Part B) How many revolutions does it make before reaching full speed?
1. A disk of mass M=160kg and radius R=0.40m spins with an initial rate of 12...
1. A disk of mass M=160kg and radius R=0.40m spins with an initial rate of 12 revolutions per second. Because of friction in the bearing, the disk slows down at a uniform rate. After 20 minutes it comes to a stop. (a) How many revolutions does the disk make before coming to rest? (b) What is the moment of inertia of the disk? (c) Find the angular acceleration of the disk as it slows down. (d) Find the torque that...
1. Starting from rest, a CD takes 3.0 s to reach its operating angular velocity of...
1. Starting from rest, a CD takes 3.0 s to reach its operating angular velocity of 450 rpm. The mass of a CD is 17 g and its diameter is 12 cm. You may assume that the small opening at the center of the CD is unimportant when calculating the rotational inertia. Assume that the angular acceleration is constant. a. What is the rotational kinetic energy of the CD after it has completely spun up? b. How high off the...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A flywheel within large water pump is a solid disk with mass 21 kg and a...
A flywheel within large water pump is a solid disk with mass 21 kg and a radius of 0.45 m. Starting from rest it begins to rotate with a constant acceleration of 2.4 rad/sec2 for 5.1 sec after which it rotates at a constant rate. 1) What is the moment of interia of the flywheel? 2) After 5.1 seconds, what is it's angular speed? 3) Though what angle has it rotated in those 5.1 seconds? 4) How many revolutions has...
A flywheel within large water pump is a solid disk with mass 23.5 kg and a...
A flywheel within large water pump is a solid disk with mass 23.5 kg and a radius of 0.36 m. Starting from rest it begins to rotate with a constant acceleration of 2.5 rad/sec2 for 5.9 sec after which it rotates at a constant rate. 1) What is the moment of interia of the flywheel? kg-m2 Submit 2) After 5.9 seconds, what is it's angular speed? rad/sec Submit 3) Though what angle has it rotated in those 5.9 seconds? rad...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 2.10 m/s2. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track. ________ (Hint: You are not given a value of the radius of the track. Think through the problem using the symbol R for this value and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT