Question

What must be the distance between point charge q1 = 28.0

What must be the distance between point charge q1 = 28.0

Homework Answers

Answer #1

Use Coulomb's Law

F = k * { [q1q2] / r^2 }

F = Force
k = Coulomb's constant
q1 = One charge
q2 = Second charge
r = Distance between charges

Isolate r

r = SQRT { k * { [q1q2] / F } }

Values, in SI units

F = 8.07 N
k = 8.987551E+9 N-m^2/C^2
q1 = 2.76E-5 C
q2 = -4.02E-5

Solve

r = SQRT { (8.987551E+9 N-m^2/C^2) * { (2.76E-5 C) * (4.02E-5 C) / (8.07 N) ] }
r = SQRT { (8.987551E+9 N-m^2/C^2) * { (1.11E-9 C^2) / (8.07 N) }
r = SQRT { (8.987551E+9 N-m^2/C^2) * { 1.37E-10 C^2/N }
r = SQRT { 1.23 m^2 }
r = 1.11 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What must be the distance in meters between point charge q1 = 21.2 µC and point...
What must be the distance in meters between point charge q1 = 21.2 µC and point charge q2 = -39.4 µC for the electrostatic force between them to have a magnitude of 7.21 N?
A charge q1 = 1.92 µC is at a distance d = 1.63 m from a...
A charge q1 = 1.92 µC is at a distance d = 1.63 m from a second charge q2 = −5.97 µC. a) Find the electric potential at a point A between the two charges that is d/3 from q1. Note that the location A in the diagram above is not to scale. b) Find a point between the two charges on the horizontal line where the electric potential is zero. (Enter your answer as measured from q1.)
Point charges Q1 = 1 nC and Q2 = 2 nC are at a distance apart....
Point charges Q1 = 1 nC and Q2 = 2 nC are at a distance apart. Which of the following statements are incorrect? Select one or more: As the distance between them decreases, the force on Q1 increases linearly. The force on Q2 is the same in magnitude and direction as that on Q1. The force on Q2 is along the line joining them. A point charge Q3 = -3 nC located at the midpoint between Q1 and Q2, Q3...
Point charges of 28.0 µC and 43.0 µC are placed 0.500 m apart. (a) At what...
Point charges of 28.0 µC and 43.0 µC are placed 0.500 m apart. (a) At what point along the line connecting them is the electric field zero? How are the electric fields due to each charge related? How can you put the two distances in terms of one distance? m (from the smaller charge) (b) What are the magnitude and direction of the net electric field halfway between them? magnitude     N/C direction     ---Select--- toward the smaller charge toward the larger...
A point charge q1=5.00μC is held fixed in space. From a horizontal distance of 6.00 cm,...
A point charge q1=5.00μC is held fixed in space. From a horizontal distance of 6.00 cm, a small sphere with mass 4.00×10^−3kg and charge q2=+2.00μC is fired toward the fixed charge with an initial speed of 41.0 m/s. Gravity can be neglected. Part A What is the acceleration of the sphere at the instant when its speed is 26.0 m/s?
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -2.90 nC is placed on the x-axis at x=+ 21.0 cm. A third point charge q3 = 2.00 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) a- What is the potential energy of the system of the three charges if q3...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 20.0 cm . A third point charge q3 = 2.10 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A: What is the potential energy of the system of the three charges...
Two point charges Q1 and Q2 are 2.30 m apart, and their total charge is 15.4...
Two point charges Q1 and Q2 are 2.30 m apart, and their total charge is 15.4 μC. If the force of repulsion between them is 0.0990 N, what are magnitudes of the two charges? Enter the smaller charge in the first box. Q1 = Q2 = If one charge attracts the other with a force of 0.0763N, what are the magnitudes of the two charges if their total charge is also 15.4 μC? The charges are at a distance of...
A point charge q1 = 4.10 nC is placed at the origin, and a second point...
A point charge q1 = 4.10 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3 = 1.90 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) Part A What is the potential energy of the system of the three charges...
1) If the potential due to a point charge is 8.00×103V at a distance of 12.0...
1) If the potential due to a point charge is 8.00×103V at a distance of 12.0 m, what are the sign and magnitude of the charge? 2) There are two charges q1 = 35 μC and q2 = -50 μC fixed in place on the x-axis. q1 is located at x=0 and q2 is located at x=0.5 What is the location on the x-axis where the potential equals 0? 3) In nuclear fission, a nucleus splits roughly in half. (a)...