Question

Given three non-interacting distinguishable in an infinite 1-D square well potential of width a. (a) Determine...

Given three non-interacting distinguishable in an infinite 1-D square well potential of width a.

(a) Determine the ground wave function for the system of distinguishing and the energy of this state.

(b) Determine the wave function of the first excited state and its energy.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Write down the time-independent Schrӧdinger Equation for two non-interacting identical particles in the infinite square...
4. Write down the time-independent Schrӧdinger Equation for two non-interacting identical particles in the infinite square well. Assuming the spins of the two particles are parallel to each other, i.e., all spin-up, find the normalized wave function representing the ground state of the two-particle system and the energies for the two cases: (a) Two particles are identical bosons. (b) Two particles are identical fermions. and (c) Find the wave functions and energies for the first and second excited states for...
For a system composed of two non-interacting, distinguishable particles of mass m1 and m2 (<<m1) in...
For a system composed of two non-interacting, distinguishable particles of mass m1 and m2 (<<m1) in an 1-D infinite potential well (V=0 for 0<x<a, V=infinite otherwise), 1)Write down the hamiltonian of the system. Obtain the eigenenergies and eigenfunctions of the hamiltonian by solving the Hamiltonian eigenequation? 2) For the second-lowest eigenenergy state, what is the probability to find particle 2 between 0< x < a/4
An electron is trapped in an infinite one-dimensional well of width = L. The ground state...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state energy for this electron is 3.8 eV. a) Calculated energy of the 1st excited state. b) What is the wavelength of the photon emitted between 1st excited state and ground states? c) If the width of the well is doubled to 2L and mass is halved to m/2, what is the new 3nd state energy? d) What is the photon energy emitted from the...
Show that the wave function of a particle in the infinite square well of width a...
Show that the wave function of a particle in the infinite square well of width a returns to its original form after a quantum revival time T = 4ma^2/π(hbar)
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.13 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 7 state? nm (b) What is the width of the square well? nm
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited from its first excited state to the state with n = 5. 1 What energy must be transferred to the electron for this quantum jump? 2 The electron then de-excites back to its ground state by emitting light. In the various possible ways it can do this, what is the shortest wavelengths that can be emitted? 3 What is the second shortest? 4 What...
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
Consider 3 identical bosons in a one dimensional infinitely deep well of width 2a. A.) What...
Consider 3 identical bosons in a one dimensional infinitely deep well of width 2a. A.) What is the wave function of the ground state? B.) What is the wave function of the first excited state?
quantum physics: Considera particle in the ground state of an infinite square well where the left...
quantum physics: Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?
For the infinite square-well potential, find the probability that a particle in its fourth excited state...
For the infinite square-well potential, find the probability that a particle in its fourth excited state is in each third of the one-dimensional box: a)  (0 ≤ x ≤ L/3) b) (L/3 ≤ x ≤ 2L/3) c) (2L/3 ≤ x ≤ L)