Question

A positive point charge with a mass of 0.43 kg is placed on a string and...

A positive point charge with a mass of 0.43 kg is placed on a string and hangs vertically. Another negative point charge is placed directly beneath this charge a distance of d. Due to its weight and the electric force, the tension in the string is 22.8 Newtons. The negative charge is then moved directly to the left of the charge and the charge on the string swings to some angle and comes to equilibrium. When the charge on the string is in equilibrium, the negative charge is 4 times further away from its initial position below the charge. With respect to the vertical, to what angle, in degrees, does the charge on the string swing?

Homework Answers

Answer #1

" When the charge on the string is in equilibrium, the negative charge is 4 times further away from its initial position below the charge."

In general this is an application of Coulombs law with some gravity added to it.

The 22.8N comes from adding the force from coulombs law to the gravity force. Gravity is ,43*9.81N so the remainder is coulombs force. Coulombs force also goes as 1/d^2 so knowing the new "d" tells you the Coulomb force in the new position. That plus the gravity force is the total force. there is no motion so the net force is zero.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
A small spherical insulator of mass 8.0 × 10-2 kg and charge (left) +0.500 μC is...
A small spherical insulator of mass 8.0 × 10-2 kg and charge (left) +0.500 μC is hung by a thin wire of negligible mass. An identical spherical mass with a negative charge of -1.900 μC (right) is held 0.20 m away from the sphere and directly to the right of it, so the wire makes an angle with the vertical (see the drawing). What is the magnitude of tension in the wire? (m g/cosθ = 0.813 N) What is the...
A point particle with known mass, m, and known positive charge, q, is placed at the...
A point particle with known mass, m, and known positive charge, q, is placed at the point (a,b) (Cartesian coordinates). The force of gravity, mg, acts downward the vertical y-direction. A second particle with unknown charge, q1, is fixed at the origin. What constant, horizontal electric field, must be applied so that the charge q will remain at rest?
A meterstick (L = 1 m) has a mass of m = 0.134 kg. Initially, it...
A meterstick (L = 1 m) has a mass of m = 0.134 kg. Initially, it hangs from two short strings: one at the 25 cm mark and one at the 75 cm mark. 1) What is the tension in the left string? N 2) Now the right string is cut! What is the initial angular acceleration of the meterstick about its pivot point? (You may assume the rod pivots about the left string, and the string remains vertical) rad/s^2...
A small plastic ball with a mass of 5.85 10-3 kg and with a charge of...
A small plastic ball with a mass of 5.85 10-3 kg and with a charge of +0.147 µC is suspended from an insulating thread and hangs between the plates of a capacitor (see the drawing). The ball is in equilibrium, with the thread making an angle of 30.0° with respect to the vertical. The area of each plate is 0.0157 m2. What is the magnitude of the charge on each plate?
A point charge of -3.5 micro-coulombs with a mass of 0.42 kg is placed in a...
A point charge of -3.5 micro-coulombs with a mass of 0.42 kg is placed in a uniform electric field directed in the +x direction. Initially, the charge is moving in +x direction at 9.5 m/s and after it has traveled a displacement of 2.2 meters in the -x direction, it is moving at 24.7 m/s in the -x direction. If a piece of paper with an area of 0.5 m2 is placed in the field and the angle between the...
7) A charge of -9 micro-coulombs with a mass of 11 kg is placed on a...
7) A charge of -9 micro-coulombs with a mass of 11 kg is placed on a horizontal surface. A uniform electric field is applied either in the +y or -y direction (perpendicular to the surface). In order to lift the charge off the surface (i.e. the normal force becomes zero) what does the minimum magnitude of the field need to be and in what direction does it need to be applied? Answer in 106 N/C as in previous problems and...
A small spherical insulator of mass 2.91 × 10-2 kg and charge +0.600 μC is hung...
A small spherical insulator of mass 2.91 × 10-2 kg and charge +0.600 μC is hung by a thin wire of negligible mass. A charge of -0.900 μC is held 0.150 m away from the sphere and directly to the right of it, so the wire makes an angle θ with the vertical (see the drawing). Find (a) the angle θ and (b) the tension in the wire.
A.) A simple pendulum is suspended from the ceiling by means of a string of length...
A.) A simple pendulum is suspended from the ceiling by means of a string of length 2.10 m. Assume that there is no friction or air resistance. Suppose you were to release the pendulum from rest, starting from an angle of 44.3 degrees with respect to the vertical, as shown. What will be the speed of the pendulum at the instant it swings through its lowest point (that is, when it s momentarily hanging vertically)? B.) OK, once again we...
An unknown positive point charge is placed at x = -0.36 m, y = 0 m,...
An unknown positive point charge is placed at x = -0.36 m, y = 0 m, a charge of -4.8 micro-coulombs is placed at x = 0 m, y = -0.23 m, a charge of +2.4 micro-coulombs is placed at x = +0.37 m, y = -0.2 m, and charge of +4.8 micro-coulombs is placed at x = 0 m, y = +0.23 m. If the total electric field due to all four charges at the origin is 3.9 x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT