Question

Consider the following distribution of objects: a 4.00-kg object with its center of gravity at (0,...

Consider the following distribution of objects: a 4.00-kg object with its center of gravity at (0, 0) m, a 1.20-kg object at (0, 6.00) m, and a 1.40-kg object at (4.00, 0) m. Where should a fourth object of mass 7.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0, 0)?

Homework Answers

Answer #1

Let the position of the 7 kg particle is (x,y).

Therefore for combined center of gravity, we can write

or,

or,

And for y-position, we can write

or,

or,

Hence, the position of the 7 kg particle should be (-0.8, - 1.03) if the center of gravity of the system is at (0,0).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following distribution of objects: a 3.00-kg object with its center of gravity at (0,...
Consider the following distribution of objects: a 3.00-kg object with its center of gravity at (0, 0) m, a 4.20-kg object at (0, 3.00) m, and a 1.40-kg object at (2.00, 0) m. Where should a fourth object of mass 7.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0, 0)?
Consider the following distribution of objects: a 1.00-kg object with its center of gravity at (0,...
Consider the following distribution of objects: a 1.00-kg object with its center of gravity at (0, 0) m, a 3.20-kg object at (0, 5.00) m, and a 4.40-kg object at (2.00, 0) m. Where should a fourth object of mass 7.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0, 0)?
Consider the following distribution of objects: a 1.00-kg object with its center of gravity at (0,...
Consider the following distribution of objects: a 1.00-kg object with its center of gravity at (0, 0) m, a 2.20-kg object at (0, 3.00) m, and a 4.40-kg object at (4.00, 0) m. Where should a fourth object of mass9.00 kg be placed so that the center of gravity of the four-object arrangement will be at (0, 0)?
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg...
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 3.1 kg at (0.0, 3.6) m, and 4.0 kg at (2.7, 0.0) m. Where should a fourth object of 7.4 kg be placed so that the center of gravity of the four-object arrangement will be at (0.0, 0.0) m?
Consider the following mass distribution where the x-and y-coordinates are given in meters: 5.0 kg at...
Consider the following mass distribution where the x-and y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 3.2 kg at (0.0, 4.6) m, and 4.0 kg at (3.5, 0.0) m. Where should a fourth object of 7.7 kg be placed so that the center of gravity of the four-object arrangement will be at (0.0, 0.0) m? x =  m y =  m
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg...
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 3.1 kg at (0.0, 4.7) m, and 4.0 kg at (2.7, 0.0) m. Where should a fourth object of 8.6 kg be placed so that the center of gravity of the four-object arrangement will be at (0.0, 0.0) m? x= _____m y=______m
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg...
Consider the following mass distribution where the x- and y-coordinates are given in meters: 5.0 kg at (0.0, 0.0) m, 2.8 kg at (0.0, 4.3) m, and 4.0 kg at (2.9, 0.0) m.Where should a fourth object of 7.5 kg be placed so that the center of gravity of the four-object arrangement will be at (0.0, 0.0) m? x =  m y =  m
Consider a square of mass 4.00 kg, with side 2.00 m, negligible thickness, with its sides...
Consider a square of mass 4.00 kg, with side 2.00 m, negligible thickness, with its sides oriented along the usual axes with its center at the origin (0, 0). a)Determine its CM using symmetry arguments. b)Imagine that the 1m×1m part of it in the fourth quadrant is chopped off. Where is the new CM? c)Repeat using the following trick: view the chopped off shape as a full square plus a 1m×1m square of negative mass−1.00 kg in the fourth quadrant.
Four objects are located as follows: 3.70 kg at (-20.0 m, 0), 5.00 kg at (-20.0...
Four objects are located as follows: 3.70 kg at (-20.0 m, 0), 5.00 kg at (-20.0 m, -12.0 m), 7.40 kg at (+16.0 m, -12.0 m) and 2.50 kg at (0, 0). Find the magnitude and direction of the force of gravity on: A) the 3.70 kg object. B) the 7.40 kg object
Three uniform spheres are placed in the xy plane as follows: The center of mass of...
Three uniform spheres are placed in the xy plane as follows: The center of mass of an 8.50-kg sphere is located at (2.00, 2.00) m, the center of mass of a 5.00-kg sphere is located at (0, 5.20) m, and the center of mass of a 2.00-kg sphere is located at (3.10, 0) m. Where should a 6.00-kg sphere be placed if the center of mass of the four-sphere system is to be located at the origin? x = m...