Question

9). Three charges, + 33 uC, - 33 uC and + 33 uC are placed at...

9). Three charges, + 33 uC, - 33 uC and + 33 uC are placed at A (0,5cm), B (5cm,0), C(-5cm,0). Calculate the potential energy of the whole system of charges.

10). Two charges, one is at A with - 20.64 nC and other is at B with +9* 20.64 nC are seperated by 1 m. Find the distance AC in cm for which electric POTENTIAL at point C is zero. Point C is located on line AB.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
CAN YOU PLEASE ANSWER ALL QUESTIONS. ROUND TO THE FOURTH DECIMAL PLACE. 8). 2 charges, 7.32...
CAN YOU PLEASE ANSWER ALL QUESTIONS. ROUND TO THE FOURTH DECIMAL PLACE. 8). 2 charges, 7.32 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO. 9). Three charges, + 21 uC, - 21 uC and + 21 uC are placed at A (0,5cm),...
Three charges, + 43 uC, - 43 uC and + 43 uC are placed at A...
Three charges, + 43 uC, - 43 uC and + 43 uC are placed at A (0,5cm), B (5cm,0), C(-5cm,0). Calculate the potential energy of the whole system of charges.
Point charges of +4.1 uC and -2.2 uC are placed on the x-axis at 11m and...
Point charges of +4.1 uC and -2.2 uC are placed on the x-axis at 11m and -11m respectively. At what point on the x-axis is the potential from these two charges zero?
Three equal point charges, each with charge 1.05 ?C , are placed at the vertices of...
Three equal point charges, each with charge 1.05 ?C , are placed at the vertices of an equilateral triangle whose sides are of length 0.650 m . What is the electric potential energy U of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.)
Two point charges q_1 = 2 uC and q_2 = -2 uC are in a distance...
Two point charges q_1 = 2 uC and q_2 = -2 uC are in a distance of 1 cm between each other. Find the intensity of the electrostatic field at point M perpendicular to point charge q_1 and at a distance of r = 5 cm. (calculating the resultant electric field intensity)
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -2.90 nC is placed on the x-axis at x=+ 21.0 cm. A third point charge q3 = 2.00 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) a- What is the potential energy of the system of the three charges if q3...
A point charge q1 = 4.05 nC is placed at the origin, and a second point...
A point charge q1 = 4.05 nC is placed at the origin, and a second point charge q2 = -3.05 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3= 1.90 nC is to be placed on the x-axis between q1and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A - What is the potential energy of the system of the three charges if...
A point charge q1 = 4.10 nC is placed at the origin, and a second point...
A point charge q1 = 4.10 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3 = 1.90 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) Part A What is the potential energy of the system of the three charges...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 20.0 cm . A third point charge q3 = 2.10 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A: What is the potential energy of the system of the three charges...
(12.) In nuclear fission, a nucleus splits roughly in half. (a) What is the potential 3.00...
(12.) In nuclear fission, a nucleus splits roughly in half. (a) What is the potential 3.00 ✕ 10-14 m from a fragment that has 46 protons in it? 2.21e+06 V [My Answer 2.21e+6 V] (b) What is the potential energy in MeV of a similarly charged fragment at this distance? [My Answer 102 MeV] (13) In one of the classic nuclear physics experiments at the beginning of the 20th century, an alpha particle was accelerated toward a gold nucleus, and...