Question

A sled with mass 15 kg moves in a straight line on a horizontal surface as...

A sled with mass 15 kg moves in a straight line on a horizontal surface as it is being pulled by a force F at an angle of 30°with the direction of motion. A force of friction of 10 N acts on the sled. At one point in its path, its speed is 4.0 m/s; after it has traveled a distance 5.0 m beyond this point, its speed is 7.0 m/s.

  1. Use the work-energy theorem to find the total work done on the sled?
  2. Find the pulling force F on the sled.

Homework Answers

Answer #1

The answers are

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The physics of work on an accelerating object. a) A sled is dragged along by a...
The physics of work on an accelerating object. a) A sled is dragged along by a 25.0 N force that is applied at an angle of 50.0 degrees above the horizontal. The sled moves to the right and friction is negligible, so it is constantly accelerated while the force is being applied. How much work is done after the sled has moved 2.5 m? b) Given the motion of the sled, how must the downward force of gravity on the...
In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and...
In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it starts to careen down the steeply sloped track. In one event, the sled reaches a top speed of 9.2 m/s before starting down the initial part of the track, which is sloped downward at an angle of 4.0 ∘ What is the sled's speed after it has traveled the first 140 m ?
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 98 N parallel to the incline, which makes an angle of 19.5° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.98 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 104 N parallel to the incline, which makes an angle of 20.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.92 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....
Suppose the ski patrol lowers a rescue sled carrying an injured skiier, with a combined mass...
Suppose the ski patrol lowers a rescue sled carrying an injured skiier, with a combined mass of 97.5 kg, down a 60.0° slope at constant speed. The coefficient of kinetic friction between the sled and the snow is 0.100. a) How much work in joules, is done by friction as the sled moves 3l m along the hill? b)How much work in joules, is done by the rope on the sled over this distance ? c) What is the work...
A box with mass 1.74 kg is being pulled across a rough surface at a constant...
A box with mass 1.74 kg is being pulled across a rough surface at a constant speed with a coefficient of kinetic friction µk = 0.366. The pulling force has a magnitude of 11.2 N and is directed at an angle 32.8 degrees above horizontal. If the box is dragged a distance of 10.3 m, what is the total energy lost to friction? (Hint: be sure to account for the upward component of the pulling force, and note that the...
Margie’s 15 kg brother Luke sits on a sled. Margie pulls the sled across the floor...
Margie’s 15 kg brother Luke sits on a sled. Margie pulls the sled across the floor using a rope that is angled 20° above the floor. The tension is a constant 30 N and the coefficient of friction is 0.20. Use work and energy to find Luke’s speed after being pulled 3.0 m.
A 2.5-kg object moves across a rough horizontal surface. A force (F = 6.0 N) acts...
A 2.5-kg object moves across a rough horizontal surface. A force (F = 6.0 N) acts on the object as shown. The magnitude of the object’s acceleration is 1.2 m/s2. What is the magnitude of the force of friction acting on the block? The angle for the diagram is 30 degrees.
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT