Question

An infinite plane has a charge density of σ = 10 nC/m^2. A charge q =...

An infinite plane has a charge density of σ = 10 nC/m^2. A charge q = 50 10^-19C; of mass m = 5E-28 kg, is released from rest, at a distance d= 8 cm away from the plane. We need to find the speed of the charge after it has moved by a distance r = 2 cm. Ignore the effects of gravity.

a) Find the electrostatic field due to the plane of charge.

b) Using the relationship between the potential difference and the field, find the potential difference as the charge moves a distance of r.

c) Is that potential difference positive or negative?

d) Using the relationship between potential and potential energy, find the change in potential energy as the charge moves the distance r.

e) Is mechanical energy conserved?

f) Using conservation of mechanical energy, find the speed of the charge after it has moved a distance r.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An infinite plane of surface charge density σ = 4.5 nC/m2 lies in the x =...
An infinite plane of surface charge density σ = 4.5 nC/m2 lies in the x = 0.00 m plane, and a second infinite plane of surface charge density σ = 4.50 nC/m2 lies in the x = 0.0200 m plane. Find: a. the electric field at (i) x = 0.0180 m and (ii) x = 0.0500 m b. the electric potential difference between the 2 planes.
An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in...
An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in the yz plane, passes through the origin, and is at a potential of 0.7 kV . A long wire having a linear charge density of 91 nC/m lies parallel to the y axis and intersects the x axis at (4.2 m, 0, 0). What is the potential energy of a 1.9 nC charge placed at (1.1 m, 0, 0) ? The value of the...
An infinite plane in the xz plane carries a uniform surface charge density σ1 = 66...
An infinite plane in the xz plane carries a uniform surface charge density σ1 = 66 nC/m2. A second infinite plane carrying a uniform charge density σ2 = 32nC/m2 intersects the xz plane at the z axis and makes an angle of 30° with the xz plane as shown in the figure below. Find the electric field in the xy plane at each of the following locations. (a) x = 6 m, y = 2 m ?? N/C î +...
A very large plane carries a surface charge density of +350 nC/m^2. 5 cm above and...
A very large plane carries a surface charge density of +350 nC/m^2. 5 cm above and parallel to this plane is a thin disk with a diameter of 3 cm and a total charge of -2.5 nC. 5 cm above the disk, and on the axis of th disk, is a 1.5 nC point charge. Find the net force (magnitude and direction) acting on a proton halfway between the center of the disk and the 1.5 nC point charge.
A 299 nC point charge is at co-ordinate (0, 2) m. A 122 nC charge is...
A 299 nC point charge is at co-ordinate (0, 2) m. A 122 nC charge is at (0, -6) m. Find the electrostatic field at (4, 0) m.
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this...
Consider an infinite plane of charge with a charge density of +10 µC/m2. Assume that this plane is on the y-and z-axes. That is, assume it is perpendicular to the x-axis and that it passes through the origin. a) What would be the electric field strength and direction at the point (5 m, 0, 0)? The strength is___________N/C The direction is Answer: -x, x, -y, y, -z, or z b) What would be the electric field strength and direction at...
A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 )...
A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin. Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ). The charge Q is repelled by q, thus having work done on it and losing potential energy. What is the work done by the electric field between r1 and r2 ? What is the change in the potential energy...
An electric dipole lies on the x-axis containing a charge of -2.5 nC at x =...
An electric dipole lies on the x-axis containing a charge of -2.5 nC at x = -10.0 cm, and a +2.5 nC charge at x =+10.0 cm. Find the electric field 1 on the x-axis at the point (20.0 cm, 0) 2 on the y-axis at the point (0, 10.0 cm) In the model of the hydrogen atom, the proton,(+e) and electron, (-e) (having charge =±e =±1.6X10^−19C) are separated by 5.29x10^-11m. Calculate the electric potential energy of this atom. Suppose...
Plane A carries a uniform surface charge density of -8.30 μC/m^2 , and Plane B, which...
Plane A carries a uniform surface charge density of -8.30 μC/m^2 , and Plane B, which is to the right of A, carries a uniform charge density of +13.6 μC/m^2 . Assume that the planes are large enough to be treated as infinite.The distance between large parallel planes is 5.00 cm. Part A)   Find the magnitude of the net electric field these planes produce at a point 4.00 cm to the right of plane A. Express your answer with the...
1) A 7.24 -nC charge is located 1.62 m from a 4.10-nC charge. Find the magnitude...
1) A 7.24 -nC charge is located 1.62 m from a 4.10-nC charge. Find the magnitude of the electrostatic force that one charge exerts on the other. 2) A small sphere of mass m = 6.80 g and charge q1 = 28.1 nC is attached to the end of a string and hangs vertically. A second charge of equal mass and charge q2 = −58.0 nC is located below the first charge a distance d = 2.00 cm below the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT