Question

A particle is confined to the one-dimensional infinite potential well of width L. If the particle...

A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the
n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4,
and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being
trapped in the well.

Please answer as soon as possible.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find...
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find wavefunction ψn(x) under assumption that the wavefunction in 1 dimensional box whose potential energy U is 0 (0≤ z ≤L) is normalized (2) Find eighenvalue En of electron (3) If the yellow light (580 nm) can excite the elctron from n=1 to n=2 state, what is the width (L) of petential well?
An electron is trapped in an infinite square well potential of width 3L, which is suddenly...
An electron is trapped in an infinite square well potential of width 3L, which is suddenly compressed to a width of L, without changing the electron’s energy. After the expansion, the electron is found in the n=1 state of the narrow well. What was the value of n for the initial state of the electron in the wider well?
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the probability that the particle is in its ground state is in a) The left third of the box: 0 ≤ ? ≤ ?/3 b) The middle third of the box: ?/3 ≤ ? ≤ 2?/3 c) The right third of the box: 2?/3 ≤ ? ≤ L After doing parts a), b), and c): d) Calculate the sum of the probabilities you got for...
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state...
An electron is trapped in an infinite one-dimensional well of width = L. The ground state energy for this electron is 3.8 eV. a) Calculated energy of the 1st excited state. b) What is the wavelength of the photon emitted between 1st excited state and ground states? c) If the width of the well is doubled to 2L and mass is halved to m/2, what is the new 3nd state energy? d) What is the photon energy emitted from the...
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y...
Eight electrons are confined to a two-dimensional infinite potential well with widths L_X = L y =L. Assume that the electrons do not electrically interact with one another. Considering electron spin and degeneracies of some energy levels, what is the total energy of the eight-electron system in its ground state, as a multiple of h^2/(8mL^2 )?
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited from its first excited state to the state with n = 5. 1 What energy must be transferred to the electron for this quantum jump? 2 The electron then de-excites back to its ground state by emitting light. In the various possible ways it can do this, what is the shortest wavelengths that can be emitted? 3 What is the second shortest? 4 What...