Question

These two waves travel along the same string: y1 = (4.17 mm) sin(2.24?x - 300?t), y2 = (5.96 mm) sin(2.24?x - 300?t + 0.727?rad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.20 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude of the new resultant wave?

Answer #1

The superpostion of the waves can be written as

which can be simplified to

Let

and

then

and

Therefore

a) The amplitude is

b) the phase angle of the resultant wave is

c) If another wave is sent along the string its phase angle should be

relative to the first wave in order to maximise the amplitude of the resultant wave

These two waves travel along the same string:
y1 = (4.57 mm)
sin(2.24πx - 320πt)
y2 = (5.81 mm)
sin(2.24πx - 320πt +
0.800π rad).
What are (a) the amplitude and
(b) the phase angle (relative to wave 1) of the
resultant wave? (c) If a third wave of amplitude
4.93 mm is also to be sent along the string in the same direction
as the first two waves, what should be its phase angle in order to
maximize the...

These two waves travel along the same string: y1 = (4.37 mm)
sin(2.17πx - 440πt) y2 = (5.75 mm) sin(2.17πx - 440πt +
0.754πrad).
What are (a) the amplitude and
(b) the phase angle (relative to wave 1) of the
resultant wave? (c) If a third wave of amplitude
5.45 mm is also to be sent along the string in the same direction
as the first two waves, what should be its phase angle in order to
maximize the amplitude...

These two waves travel along the same string:
y1 = (3.59 mm) sin(2.23πx
- 380πt)
y2 = (5.61 mm) sin(2.23πx
- 380πt + 0.861πrad).
What are (a) the amplitude and
(b) the phase angle (relative to wave 1) of the
resultant wave? (c) If a third wave of amplitude
5.21 mm is also to be sent along the string in the same direction
as the first two waves, what should be its phase angle in order to
maximize the amplitude...

These two waves travel along the same string:
y1 = (4.14 mm) sin(2.31πx
- 430πt)
y2 = (5.79 mm) sin(2.31πx
- 430πt + 0.771πrad).
What are (a) the amplitude and
(b) the phase angle (relative to wave 1) of the
resultant wave? (c) If a third wave of amplitude
5.24 mm is also to be sent along the string in the same direction
as the first two waves, what should be its phase angle in order to
maximize the amplitude...

These two waves travel along the same string:
y1 =
(3.73 mm) sin(1.60πx -
340πt)
y2 =
(5.39 mm) sin(1.60πx - 340πt +
0.867πrad).
What are (a) the amplitude and
(b) the phase angle (relative to wave 1) of the
resultant wave? (c) If a third wave of amplitude
4.89 mm is also to be sent along the string in the same direction
as the first two waves, what should be its phase angle in order to
maximize the amplitude...

Four waves are to be sent along the same string, in the same
direction y1(x,t) = (2 mm) sin(2px – 200pt)
y2(x,t) = (2 mm) sin(2px – 200pt + 0.7p) y3(x,t) = (2 mm)
sin(2px – 200pt + p) y4(x,t) = (2 mm) sin(2px – 200pt + 3.7p)
(a) For y1, what is the (a) frequency, (b) wavelength and (c)
speed? When these waves are all added together, what is the (d)
amplitude of the resultant wave?

Two sinusoidal waves, identical except for phase, travel in the
same direction along a string, producing a net wave y´(x, t) =
(1.90 mm) sin(22.0x - 6.80t + 0.940 rad), with x in meters and t in
seconds. What are (a) the wavelength λ of the two waves, (b) the
phase difference between them, and (c) their amplitude ym?

Two waves, y1(x,t) and
y2(x,t), travel on the same piece of
rope and combine to produce a resultant wave of the form
y(x,t) = 8.000 sin(4.000x +
1.000t + 0)cos(1.000x + 3.000t + 0). The
first wave is y1(x, t ) = 4.000
sin(3.000x + (-2.000)t), while the second wave
has the form y2(x, t ) = A
sin(kx ± ωt+ϕ), where x is
measured in m and t in seconds. Determine the values of
the constants in the second...

Two sinusoidal waves of the same frequency are to be sent in the
same direction along a taut string. One wave has an amplitude of
6.7 mm, the other 10.2 mm. (a) What phase
difference φ1 between the two waves results in
the smallest amplitude of the resultant wave? (b)
What is that smallest amplitude? (c) What phase
difference φ2 results in the largest amplitude
of the resultant wave? (d) What is that largest
amplitude? (e) What is the resultant...

Two sinusoidal waves of the same frequency are to be sent in the
same direction along a taut string. One wave has an amplitude of
6.2 mm, the other 8.5 mm. (a) What phase
difference φ1 between the two waves results in
the smallest amplitude of the resultant wave? (b)
What is that smallest amplitude? (c) What phase
difference φ2 results in the largest amplitude
of the resultant wave? (d) What is that largest
amplitude? (e) What is the resultant...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 10 minutes ago

asked 16 minutes ago

asked 30 minutes ago

asked 38 minutes ago

asked 41 minutes ago

asked 47 minutes ago

asked 47 minutes ago

asked 50 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago