Question

A block with mass m1 = 8.8 kg is on an incline with an angle θ...

A block with mass m1 = 8.8 kg is on an incline with an angle θ = 40° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.38 and μs = 0.418.

1. When there is no friction, what is the magnitude of the acceleration of the block?

2. Now with friction, what is the magnitude of the acceleration of the block after it begins to slide down the plane?

3. To keep the mass from accelerating, a spring is attached. What is the minimum spring constant of the spring to keep the block from sliding if it extends x = 0.12 m from its unstretched length.

4. Now a new block with mass m2 = 16.3 kg is attached to the first block. The new block is made of a different material and has a greater coefficient of static friction. What minimum value for the coefficient of static friction is needed between the new block and the plane to keep the system from accelerating?

Please include Process!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block with mass m1 = 8.8 kg is on an incline with an angle θ...
A block with mass m1 = 8.8 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1. When there is no friction, what is the magnitude of the acceleration of the block? 2. Now with friction, the acceleration is measured to be only a = 3.52 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.6 kg is on an incline with an angle θ...
A block with mass m1 = 8.6 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.42 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block of mass m = 14.5 kg rests on an inclined plane with a coefficient...
A block of mass m = 14.5 kg rests on an inclined plane with a coefficient of static friction of μs = 0.16 between the block and the plane. The inclined plane is L = 6.1 m long and it has a height of h = 3.8 m at its tallest point. A.What angle, θ in degrees, does the plane make with respect to the horizontal? B.What is the magnitude of the normal force, FN in newtons, that acts on...
4.) Find the accelerations (magnitude and direction) of each of the following systems. Show your work...
4.) Find the accelerations (magnitude and direction) of each of the following systems. Show your work for credit. [That is at bare minimum: (i) draw appropriate free body diagrams; (ii) write down Newton's second law; (iii) solve the resulting equation(s) to find the acceleration.] c.) A block of mass 10 kg hanging from a spring with spring constant ks= 1000 N / m that is attached to the roof of a moving elevator and is stretched 5 cm beyond its...
(6) A block of mass M1 resting on a 20.8° slope is shown. The block has...
(6) A block of mass M1 resting on a 20.8° slope is shown. The block has coefficients of friction μs = 0.792 and μk = 0.313 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging block of mass M2 = 2.02 kg. (a) What is the minimum mass M1 that will remain stationary and not slip? (b) If this minimum mass is nudged ever so slightly, it will start being pulled...
A 3.00-kg block is sent up a ramp of angle θ equal to 43.0° with an...
A 3.00-kg block is sent up a ramp of angle θ equal to 43.0° with an initial velocity ν0 equal to 23.0 m/s. Between the block and the ramp, the coeffiient of kinetic friction is μk equal to 0.50 and the coefficient of static friction is μs equal to 0.80. 1) How far up the ramp (in the direction along the ramp) does the block go before it comes to a stop? (Express your answer to two significant figures.)
A block of mass 16.31 kg is initially held at rest on a 25.94 degree incline....
A block of mass 16.31 kg is initially held at rest on a 25.94 degree incline. The coefficient of static friction is 0.3472 and the coefficient of kinetic friction is 0.2083. A) Find: mg, FDH, FN, fsmax, and fk and express them rounded to the nearest full Newton. B) What is the minimum force up the ramp that will keep the block from sliding down? C) What is the maximum force up the ramp you can exert before the block...
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
Part A- a box (mass 12.1 kg) sits on a rough incline that makes an angle...
Part A- a box (mass 12.1 kg) sits on a rough incline that makes an angle α = 30.2o with the horizontal. A massless string is tied to the box, runs parallel to the incline, passes over a massless, frictionless pulley, and is tied to mass M hanging on the other end. Assume μs = 0.335 is the coefficient of static friction between the box and the surface of the plane. Find the maximum value of M, in kg, for...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient...
A block is at rest on an inclined plane whose elevation can be varied. The coefficient of static friction is μs= 0.36, and the coefficient of kinetic friction is μk = 0.16. The angle of elevation θ is increased slowly from the horizontal. At what value of θ does the block begin to slide (in degrees)? What is the acceleration of the block?