Question

An object on a spring is subject to a drag force that is linear with velocity....

An object on a spring is subject to a drag force that is linear with velocity. The mass is 2 kg, the drag force constant is 4 kg/s, and the spring constant is 2.5 N/m.

a. Find the equation of motion x(t).

b. Sketch a graph of x(t).

c. Describe the motion in words.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object on a spring is subject to a drag force that is linear with velocity....
An object on a spring is subject to a drag force that is linear with velocity. The mass is 0.5 kg, the drag force constant is 3 kg/s, and the spring constant is 2.5 N/m. a. Find the equation of motion x(t). b. Sketch a graph of x(t). c. Describe the motion in words.
An object of mass of 2.7 kg is attached to a spring with a force constant...
An object of mass of 2.7 kg is attached to a spring with a force constant of k = 280 N/m. At t = 0, the object is observed to be 2.0 cm from its equilibrium position with a speed of 55 cm/s in the -x direction. The object undergoes simple harmonic motion “back and forth motion” without any loss of energy. (a) Sketch a diagram labeling all forces on the object and calculate the maximum displacement from equilibrium of...
The motion of a spring that is subject to a frictional force or a damping force...
The motion of a spring that is subject to a frictional force or a damping force (such as a shock absorber on a car) is often modeled by the product of an exponential function and a sine or cosine function. Suppose the equation of motion of a point on such a spring is s(t)=7e−1.2tsin(2πt)s(t)=7e−1.2tsin⁡(2πt) where ss is measured in centimeters and tt is measured in seconds. Find the velocity of the point after tt seconds. v(t)v(t) = Graph both the...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
An object of mass (m = 0.8 kg) is attached to a horizontal spring. Its position...
An object of mass (m = 0.8 kg) is attached to a horizontal spring. Its position varies with time as x = (0.33 m)cos(0.2πt). (a) Find the amplitude of its motion (in m). (b) Find the spring constant (in N/m). (c)Find the position (in m) at t = 0.2 s. (d)Find the speed (in m/s) of the object at t = 0.2 s.
An object has a mass of 2 Kg. It is attached to a spring that has...
An object has a mass of 2 Kg. It is attached to a spring that has a constant of K=10 N/m and also a damping force of 4 times the velocity. The object begins at 1 m below equilibrium and has a beginning velocity of 1 m/s toward equilibrium( upward) . Solve for the position x(t). Is the spring overdamped, underdamped or critically damped?
A mass of 4 Kg attached to a spring whose constant is 20 N / m...
A mass of 4 Kg attached to a spring whose constant is 20 N / m is in equilibrium position. From t = 0 an external force, f (t) = et sin t, is applied to the system. Find the equation of motion if the mass moves in a medium that offers a resistance numerically equal to 8 times the instantaneous velocity. Draw the graph of the equation of movement in the interval.
In addition to the buoyant force, an object moving in a liquid experiences a linear drag...
In addition to the buoyant force, an object moving in a liquid experiences a linear drag force Fdrag = (bv, direction opposite the motion), where b is a constant. For a sphere of radius R, the drag constant can be shown to be b = 6πηR, where η is the viscosity of the liquid. Consider a sphere of radius R and density ρ that is released from rest at the surface of a liquid with density ρf. a. Find an...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
The position of a 0.30 kg object attached to a spring is described by x =...
The position of a 0.30 kg object attached to a spring is described by x = (0.25 m) cos(0.4 π t). (a) What is the amplitude of the motion? (b) Calculate the spring constant. (c) Calculate the position of the object at t = 0.30 s. (d) Calculate the velocity of the object at t = 0.30 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT