Question

A 48 kg ice skater is gliding along the ice, heading due north at 5.0 m/s....

A 48 kg ice skater is gliding along the ice, heading due north at 5.0 m/s. The ice has a small coefficient of static friction, to prevent the skater from slipping sideways, but

Homework Answers

Answer #1

W = F*d
KE = 0.5*m*v^2

Since the wind fails to move the skater any to the east there is no work done in this direction. All the work is done in the N-S direction. So find the component of the Force in that direction.

F = 4 cos 45 = 2.76 N
W = F * d = 2.76 N * 90 m
W = 248 N*m

KE1 = Initial kinetic energy
KE2 = kinetic energy after 90 m

The energy after 90 meter equals the initial kinetic energy minus the energy lost to the work performed by the wind on the skater.

KE2 = KE1 - W
0.5 m*v2^2 = 0.5 mv1^2 - W
solve for v2
v2 = sqrt[ v1^2 - 2W/m]
v2 = sqrt [(5 m/s)^2 - (2*248 N*m/48 kg)]
v2 = 3.83 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 48 kg iceskater is gliding along the ice, heading due north at 5.0 m/s. The...
A 48 kg iceskater is gliding along the ice, heading due north at 5.0 m/s. The ice has a small coefficient of static friction, to prevent the skater from slipping sideways, but
A 55 kg ice skater is gliding along at 3.5 m/s. 5 seconds later her speed...
A 55 kg ice skater is gliding along at 3.5 m/s. 5 seconds later her speed has dropped to 2.9 m/s. a) What is the magnitude of the kinetic friction acting on her skates? Ignore!ofair. b) What is the coefficient of friction between the metal skate blade and the ice?
At the center of a 50-m-diameter circular ice rink, a 74 kg skater traveling north at...
At the center of a 50-m-diameter circular ice rink, a 74 kg skater traveling north at 2.3 m/s collides with and holds onto a 61 kg skater who had been heading west at 3.1 m/s . How long will it take them to glide to the edge of the rink? Where will they reach it? Give your answer as an angle north of west.
A 60.0 kg skater moving initially at 3.15 m/s on rough horizontal ice comes to rest...
A 60.0 kg skater moving initially at 3.15 m/s on rough horizontal ice comes to rest uniformly in 3.85 s due to friction from the ice. What force does friction exert on the skater? F= Value? units?
A car with a mass of 1,400 kg and a speed of 15 m/s heading north...
A car with a mass of 1,400 kg and a speed of 15 m/s heading north approaches an intersection. At the same time, a minivan with a mass of 1,800 kg and speed of 22 m/s heading east is also approaching the intersection. The car and the minivan collide and stick together. What is the velocity of the wrecked vehicles just after the collision? Ignore friction between the tires and the surface of the road. (Enter the magnitude in m/s...
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with...
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with mass 65 kg. The skaters cling together after the collision and move without friction. Compute their speed after the collision.
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the...
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the direction he is moving at 15 m/s relative to the ice. a. Find the velocity of the ice skater after throwing the puck. (Ignore friction) b. A second skater who is 60 kg initially at rest catches the puck. Find the velocity of the second skater after catching the puck.
A skater of mass 60.0 kg standing on ice throws a stone of mass 7.69 kg...
A skater of mass 60.0 kg standing on ice throws a stone of mass 7.69 kg with a speed of 20.3 m/s in a horizontal direction. Find the distance over which the skater will move in the opposite direction if the coefficient of kinetic friction between the skater and the ice is 0.03.
A 52.0-kg skater is traveling due east at a speed of 3.30 m/s. A 69.5-kg skater...
A 52.0-kg skater is traveling due east at a speed of 3.30 m/s. A 69.5-kg skater is moving due south at a speed of 7.45 m/s. They collide and hold on to each other after the collision, managing to move off at an angle ? south of east, with a speed of vf. Find the following. (a) the angle ? ° (b) the speed vf, assuming that friction can be ignored m/s
A 52.0-kg skater is traveling due east at a speed of 1.10 m/s. A 67.0-kg skater...
A 52.0-kg skater is traveling due east at a speed of 1.10 m/s. A 67.0-kg skater is moving due south at a speed of 8.90 m/s. They collide and hold on to each other after the collision, managing to move off at an angle south of east, with a speed of vf. Find (a) the angle and (b) the speed vf, assuming that friction can be ignored.