Question

An open tube is resonating at two successive harmonics of frequencies 650 HzHz and 980 HzHz...

An open tube is resonating at two successive harmonics of frequencies 650 HzHz and 980 HzHz .  

A) What is the fundamental frequency of the tube?

B) What is the speed of sound if the length of the tube is 33cm

C) What is the frequency of the 4th harmonic?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The frequencies of two successive higher harmonics of a standing sound wave in a closed-closed tube...
The frequencies of two successive higher harmonics of a standing sound wave in a closed-closed tube is 450 Hz and 600 Hz. There are no other frequencies in between these two. What are the frequencies of the fundamental (1st harmonic) and the second harmonic of this tube? Draw the standing wave pattern (with respect to pressure variation) of the second harmonic. Mark the nodes and anti-nodes.
The standing wave properties of an ear canal are often modelled as a tube with one...
The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of...
for any five successive harmonics in a certain organ pipe, the frequency difference between the highest...
for any five successive harmonics in a certain organ pipe, the frequency difference between the highest and lowest of the five is 392 hz. if the middle frequency of one particular set of five is 1127hz (a) dettermine the fundemental feequency (b) is the pipe open or closed... explain (c) what is the pipes length if the speed of sound is 344 m/s
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
a wooden tube, 1.2 meters long and open at both ends produces sound when it hits....
a wooden tube, 1.2 meters long and open at both ends produces sound when it hits. The tube has a diameter of 3 cm. the temp in the room is 34 degrres Celcius: a) what is the frequency if the third harmonic? b) the tube was filled with a gas and the frequency of the fundamental was changed to 400 Hz. What is the speed of sound in the gas?
Please Ensure that part e) is completed The standing wave properties of an ear canal are...
Please Ensure that part e) is completed The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in the following diagram for a tube of length L = 2.1 cm. The fundamental mode for the sound-pressure standing wave is indicated.The standing wave properties of an ear canal are often modelled as a tube with one end open and one end closed. This is shown in...
d) An open-ended pipe contains a plunger so that the length of the closed-open pipe can...
d) An open-ended pipe contains a plunger so that the length of the closed-open pipe can be varied. The sound wave has frequency 2.1 kHz. (i) As the pipe length is increased from zero, what are the first 3 lengths that produce a standing wave? (ii) Draw the standing wave patterns in each case. (iii) The speed of sound varies increases with √? where T is the temperature of the air in Kelvin. Consider two identical pipes resonating at their...
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
The overall length of a piccolo is 33.0 cm. The resonating air column is open at...
The overall length of a piccolo is 33.0 cm. The resonating air column is open at both ends. (a) Find the frequency (in Hz) of the lowest note a piccolo can sound. (Assume that the speed of sound in air is 343 m/s.) (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 5 000 Hz. Find the distance (in mm) between adjacent antinodes...
A tube which is open at one end and closed at the other end has a...
A tube which is open at one end and closed at the other end has a length of 0.25 m. assume the speed of sound in the tube and in the surrounding air 350 m/s. a. Make one drawing of the tube for each of the three resonances with the longest wavelengths possible for the tube (i.e. 3 drawings total). Label the wavelength on each drawing (or a fraction of the wavelength if a full wave is not present), the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT