Question

An electron, initially at rest, is accelerated through a potential difference of 285 V. It then...

An electron, initially at rest, is accelerated through a potential difference of 285 V. It then passes midway between two parallel plates providing a uniform electric field perpendicular to the direction in which it is travelling. The plates are 50 mm long and 25 mm apart and there is a potential difference of 71 V between them. Find

(a) The speed of the electron after its initial acceleration and
(b) The transverse deflection experienced by the electron as it emerges from between the plates.

Homework Answers

Answer #1

(a) Potential energy of the electron when at rest is

P.E = e * V = 1.6022 * 10-19 * 285 = 456.627 * 10-19 J

After acceleration, kinetic energy of the electron is,

K.E = 1/2 m v2 where m is the mass of the electron and v the speed.

From conservation of energy,

P.E = K.E

456.627 * 10-19 = 1/2 m v2

v = (456.627 *10-19 * 2/ m)1/2 = (456.627 *10-19 * 2/ 9.109 *10-31)1/2

v = (100.258 * 1012)

v = = 10.01 * 106 m/s

(b) Transverse deflection is given by,

x = L D/ 2d * Vx/V, where

D is the deflection length, D = 50 * 10-3 m

L is the distance from the middle of the deflection plates to the screen and in this case, L = D/2 =25 *10-3 m

d is the distance between two plates, d = 25 * 10-3 m

Vx is the potential difference between two plates, Vx = 71V

and V = 285 V

Thus,

x = 25 *10-3 * 50 * 10-3 * 71 / ( 2 * 25 *10-3 *285 )

x = 6.228 * 10-3 m = 6.228 mm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap...
In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap between two parallel plates having separation d = 22.1 mm and potential difference V2= 98.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?
An electron is accelerated from rest by a potential difference of 350 V. It then enters...
An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the number of revolutions completed by the electron in 2 seconds.
9. An electron is accelerated from rest by a potential difference of 350 V. It then...
9. An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the angular momentum of the electron relative to the center of the circle of rotation while circling perpendicular to the magnetic field. (me = 9.1 x 10-31 kg and e = 1.6 x 10-19 C).
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV ....
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV . It enters a region where there exists an upward pointing uniform electric field. This field is created by two parallel plates separated by 15cm with a potential difference of 250 V across them. PART A What is the speed of the protons as they enter the electric field? Express your answer using two significant figures. PART B Find the magnitude of the magnetic field...
Oppositely charged parallel plates are separated by 6.34 mm. A potential difference of 600 V exists...
Oppositely charged parallel plates are separated by 6.34 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.92 mm from the positive plate? J
An electron is accelerated in the positive x direction through a potential difference of 160 V....
An electron is accelerated in the positive x direction through a potential difference of 160 V. It then enters a region with a uniform magnetic field of 0.80 T in the positive z direction. (a) What is the speed of the electron? (b) What is the magnitude and direction of the magnetic force on the electron?
An electron cathode ray tube is accelerated when it passes between two parallel plates separated by...
An electron cathode ray tube is accelerated when it passes between two parallel plates separated by 5.0 cm. If the electron is initially moving with speed vi = 1000 m/s to the right and it has a speed of vf = 5500 m/s after leaving the acceleration region, what is the potential difference deltaV between the plates and which plate, the right or the left, is at the highest potential? Justify your answer.
) A beam of electrons is accelerated through a potential difference of dV before entering a...
) A beam of electrons is accelerated through a potential difference of dV before entering a region having uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the direction in which the electron is moving. a) What is the speed with which the electrons enter the region?
An electron is accelerated through a potential difference of 100 V. a. What is the velocity...
An electron is accelerated through a potential difference of 100 V. a. What is the velocity of the electron? v = _______ x10 6 m/s b. What is the momentum of the electron? p = _______ x10 -24 kg m/s c. What is the de Broglie wavelength of the electron? λ = _______ nm
oppositlely charged parallel plates are separated by 5.00 mm. A potential difference of 400.0 v exists...
oppositlely charged parallel plates are separated by 5.00 mm. A potential difference of 400.0 v exists between the plates. a) what is the magnitude of the electric field between the plates? b) how much work does the electric field do moving an electron from the negative plate to the positive plate?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT