Question

A hockey puck of mass m slides over a frozen lake surface. It is thrown with...

A hockey puck of mass m slides over a frozen lake surface. It is thrown with the initial velocity v and slows down to zero velocity due to ice friction. A coyote from Arizona is sitting on the ice. From his point of view the initial kinetic energy is mv^2/2 and the final kinetic energy is 0. Thus the coyote concludes that the amount of energy dissipated through the ice friction is mv^2/2. At the same time a penguin flies from Pittsburgh with the velocity v in the direction opposite to the puck motion. From his point of view the initial velocity of the puck is 2v and the final velocity is v, so that the initial kinetic energy is m(2v)^2/2 = 2mv2 and the final kinetic energy is mv^2/2. Thus the penguin concludes that the amount of energy dissipated through ice friction is 3mv^2/2. Who is correct? Explain the origin and the size of the difference. (10 points)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hockey puck on a frozen pond with an initial speed of 16.3 m/s stops after...
A hockey puck on a frozen pond with an initial speed of 16.3 m/s stops after sliding a distance of 231.3 m. Calculate the average value of the coefficient of kinetic friction between the puck and the ice.
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of...
65A. A hockey puck is given an initial speed of 4.1 m/s. If the coefficient of kinetic friction between the puck and the ice is 0.05, how far does the puck slide before coming to rest? Solve this problem using conservation of energy. Express your answer with the appropriate units. 65B. Consider a particle of mass mm = 18.0 kg revolving around an axis with angular speed ω r = 0.500 m . Assume ω = 29.0 rad/s-What is the...
A hockey puck B rests on frictionless, level ice and is struck by a second puck...
A hockey puck B rests on frictionless, level ice and is struck by a second puck A, which was originally traveling at 40.0 m/s and which is deflected 30.0◦from its original direction. Puck B acquires a velocity at a 45.0◦to the original direction of A. The pucks have the same mass. (a) What is the speed of each puck after the collision?(b) What fraction of the original kinetic energy of puck A dissipated during the collision? please show each step...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck...
7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with...
You are watching a hockey game on your digital video recorder. Your team's goalie is at...
You are watching a hockey game on your digital video recorder. Your team's goalie is at rest when he catches a 0.18-kg puck moving straight toward him. The announcer says it was a 35 m/s slap shot, based on radar gun data. Normally the goalie would be braced, but in this case he is resting on parallel skate blades so that there is negligible friction to impede his subsequent motion. The collision is too fast to observe quantitatively, but by...
An object of mass m is shot up an inclined slope at velocity v0. It starts...
An object of mass m is shot up an inclined slope at velocity v0. It starts at ground level. The slope has a coefficient of kinetic friction µk, has height h, slope length d, and is inclined at an angle θ above the horizontal. 1. Find the object’s initial total energy E0 2. Find the work done by friction as the object slides from the bottom to the top of the slope 3. Find the object’s energy E at the...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
1) a) A block of mass m slides down an inclined plane starting from rest. If...
1) a) A block of mass m slides down an inclined plane starting from rest. If the surface is inclined an angle theta above the horizontal, and the block reaches a speed V after covering a distance D along the incline, what is the coefficient of kinetic friction? b) at a distance D1 (still on the incline), the block comes to an instantaneous standstill against a spring with spring constant k. How far back up does the block? Why do...
1)A object is released from rest from a height of 1.8 m and moves down the...
1)A object is released from rest from a height of 1.8 m and moves down the incline as shown. What is the angular speed of the object when it reaches the horizontal surface? (ignore the rotational kinetic energy, friction force, drag force).The mass of the object is 50.0 kg. a)5.9 m/s b)3.3 m/s c) 2.5 m/s d)1.8 m/s 2) a 5.0 kg bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 seconds. What...
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a)....
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a). A spaceship of mass m = 7.5×104 kg is on a circular orbit of radius r1 = 2.5×1011 m around the Sun. The captain of that spaceship decides to increase the radius of his orbit to r2 = 4.0×1011 m. What is the minimum amount of energy he has to expand using his engines to move to this higher orbit? [Assume that the ship...