Question

Use MATLAB: A three-phase Y-A transformer is rated 225-kV:24-kV, 400 MVA and has a series reactance...

Use MATLAB:

A three-phase Y-A transformer is rated 225-kV:24-kV, 400 MVA and has a series reactance of 6.08 Ohms as referred to its high-voltage terminals. The transformer is supplying a load of 375 MVA, with 0.89 power factor lagging at a voltage of 24 kV (line-to-line) on its low-voltage side. It is supplied from a feeder whose impedance is 0.17 + j 2.2 Ohms connected to its high-voltage terminals. The total load in the system remains constant at 375 MVA.

A) Plot the line-to-line voltage which must be applied to the sending end of the feeder to maintain the load voltage at 24 kV line-to-line for load power factors in range from 0.3 lagging to unity to 0.3 leading.

B) Plot the sending-end voltage as a function of power factor angle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load...
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load at the low voltage side. The load absorbs 5 MVA, 0.7 power factor lagging at line to line voltage 0.9 kV. The transformer has an equivalent reactance 0.05 Ω/phase. Assuming 10 MVA and 1 kV as base value, draw the per unit diagram for the system. Find the Line to Line voltage at the primary side of the transformer. b) A three-phase synchronous generator...
Problem 2. A three phase transformer rated at 5 MVA, 115/13.2 kV has a per phase...
Problem 2. A three phase transformer rated at 5 MVA, 115/13.2 kV has a per phase series impedance of 0.007 + j0.075 per unit (shunt parameters are ignored). The low voltage side is connected to a short distribution line which modeled by a series per phase impedance of 0.02 +j0.1 per unit on the base of 10 MVA. The line supplies a balanced three phase constant impedance load at 4 MVA, 13.2 kV with power factor of 0.85 lagging •...
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is...
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is connected to a three phase Y-Y transformer T1 which feeds a 132 kV 10 miles transmission line having an impedance per phase of 2 + j5 ?/mile. At the receiving end of the transmission line is a Y-Y step down transformer T2. Three loads are connected to the secondary side of the transformer T2. Loads are as follows: Load#1 40 MVA at 0.8 pf...
A 33 kV, three-phase, 50 Hz line of resistance 2 Ω/ph and reactance j9 Ω/ph supplies...
A 33 kV, three-phase, 50 Hz line of resistance 2 Ω/ph and reactance j9 Ω/ph supplies a 33 kV/440 V transformer having negligible resistance and reactance of j2 Ω/ph referred to 33 kV. The transformer supplies a 440 V feeder of resistance 0.01 Ω/ph and reactance j0.007 Ω/ph. If VR, the receiving-end voltage, is 440 V, calculate VS, the sending-end voltage, when the three-phase load delivered is 440 kW at unity power factor.          
A 125 MVA 11 kV three phase 50 Hz synchronous generator has a synchronous reactance of...
A 125 MVA 11 kV three phase 50 Hz synchronous generator has a synchronous reactance of 1.33 p.u. The generator achieves rated open circuit voltage at a field current of 325 A. The generator is connected to a network with an equivalent line-line voltage of 11 kV and an equivalent impedance of 0.17 pu on the generator base. The generator is loaded to a real power of 110 MW. a- Find the generated voltage Eaf in p.u. such that the...
A three-phase transformer has a nameplate rating of 20 MVA, and the voltage rating of 345kV...
A three-phase transformer has a nameplate rating of 20 MVA, and the voltage rating of 345kV wye /34.5kV delta with a leakage reactance of 12% and transformer connection is wye-delta. Select a base of 20 MVA and 345 kV on the high-voltage side. Please determine the following: (a) Turn ratio of windings (b) Transformer reactance referred to low-voltage side in ohms (c) Transformer reactance referred to low-voltage side in per units
1- 30-kV, three-phase transmission line has a per phase series impedance of z = 0.05+j0.45 ohm...
1- 30-kV, three-phase transmission line has a per phase series impedance of z = 0.05+j0.45 ohm per Km and a per phase shunt admittance of y = j3.4x10-6 siemens per km. The line is 80 km long. Using the nominal π model, determine a The transmission line ABCD constants. b Find the sending end voltage and current, voltage regulation, the sending end power and the transmission efficiency when the line delivers 1. 200 MVA, 0.8 lagging power factor at 220...
1- A 69-kV, three-phase short transmission line is 16 km long. The line has a per...
1- A 69-kV, three-phase short transmission line is 16 km long. The line has a per phase series impedance of 0.125 + j0.4375 ohm per km. Determine the sending end voltage, voltage regulation, the sending end power, and the transmission efficiency when the line delivers a. 70 MVA, 0.8 lagging power factor at 64 kV b. 120 MW, unity power factor at 64 kV 2-three-phase, completely transposed 345-kV, 200 km line has two 795,000- cmil 26/2 ACSR conductor per bundle...
A 3? power system consists of a Y-connected source (300 MVA, 23 kV) supplying a Y-connected...
A 3? power system consists of a Y-connected source (300 MVA, 23 kV) supplying a Y-connected load (240 MVA, 230 kV, PF = 0.90 lagging) through a step-up transformer (330 MVA, 23?/230Y kV, X = 0.11 per unit). Take into account the transformer’s phase shift and choose the load terminal voltage VAN as the reference. Use base values of 100 MVA and 230 kV at the load. (a) Find the per-unit load currents (IA, IB, and IC). (b) Find the...
A 1200 kVA, 2.3 kV, 3-phase, star - connected alternator has a resistance of 0.401 /phase...
A 1200 kVA, 2.3 kV, 3-phase, star - connected alternator has a resistance of 0.401 /phase and a synchronous reactance of 3.21 /phase. If the generator is supplying a load at a power factor of 0.8 lagging and at rated KVA, calculate the change in line voltage at the output terminals of the generator if the load is suddenly disconnected. Assume the speed and the excitation current is to remain unchanged.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT