Question

a) What is the volume of the solid bounded by ρ = 1 m., ϕ =...

a) What is the volume of the solid bounded by ρ = 1 m., ϕ = π to 1.5π, and z = 2 m. to 3 m.?

b) What is the volume of the solid bounded by r = 1 m., θ = 0 to π, and ϕ = π to 1.5π.?

c) What is the total surface area of the solid bounded by ρ = 1 m., ϕ = 0 to π, and z = 2 m. to 3 m.?

d) What is the total surface area of the solid bounded by r = 1 m., θ = 0 to π, and ϕ = π/2 to π.?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate, in spherical coordinates, the triple integral of f(ρ,θ,ϕ)=cosϕ, over the region 0≤θ≤2π, π/6≤ϕ≤π/2, 3≤ρ≤8. integral...
Evaluate, in spherical coordinates, the triple integral of f(ρ,θ,ϕ)=cosϕ, over the region 0≤θ≤2π, π/6≤ϕ≤π/2, 3≤ρ≤8. integral =
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and...
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.) (a) (0, −3, 0): (ρ, θ, ϕ) = (3, −π 2 ​, π 2) ​<---- (WRONG!!!!) (b) (−1, 1, − 2 ): (ρ, θ, ϕ) = (2, − π 4 ​, π 4) <------ ​(WRONG!!!!)
Find the volume (in cu units) of the solid bounded above by the surface z =...
Find the volume (in cu units) of the solid bounded above by the surface z = f(x, y) and below by the plane region R. f(x, y) = 3x^3y; R is the region bounded by the graphs of y = x and y = x^2
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and...
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.) (a) (0, −3, 0) (b) (−1, 1, − sqrt 2 )
. Find the volume of the solid that is bounded above by the surface z =...
. Find the volume of the solid that is bounded above by the surface z = 1 − 2x 2 − y 2 − 2y and below by the region inside the the curve 2x 2 + y 2 + 2y = 1.
draw the solid bounded above z=9/2-x2-y2 and bounded below x+y+z=1. Find the volume of this solid.  
draw the solid bounded above z=9/2-x2-y2 and bounded below x+y+z=1. Find the volume of this solid.  
Find the volume of the solid obtained by rotating the region bounded by the given curves...
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified line. a) y = sin x − 2(x − 1)2 + 2(π − 1)2 , y = 0, about the x axis.
Find the volume V of the solid obtained by rotating the region bounded by the given...
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 2 + sec(x), −π 3 ≤ x ≤ π 3 , y = 4;    about y = 2 V = Sketch the region. Sketch the solid, and a typical disk or washer.
#6) a) Set up an integral for the volume of the solid S generated by rotating...
#6) a) Set up an integral for the volume of the solid S generated by rotating the region R bounded by x= 4y and y= x^1/3 about the line y= 2. Include a sketch of the region R. (Do not evaluate the integral). b) Find the volume of the solid generated when the plane region R, bounded by y^2= x and x= 2y, is rotated about the x-axis. Sketch the region and a typical shell. c) Find the length of...
Find the volume of the solid obtained by rotating the region bounded by the given curves...
Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. y=0,y=cos(4x), x= π/8, x=0 about the axis y=−2