Question

At t = 0, a flywheel has an angular velocity of 4.3 rad/s, a constant angular...

At t = 0, a flywheel has an angular velocity of 4.3 rad/s, a constant angular acceleration of -0.26 rad/s2, and a reference line at ?0 = 0.

(a) Through what maximum angle ?max will the reference line turn in the positive direction?

(b) At what times t will the line be at ? = 1/2 ?max (consider both positive and negative values of t)

(c) At what times t will the line be at ? = -10.7 rad (consider both positive and negative values of t)

Homework Answers

Answer #1

?(t) = ?? + ?? * t + 1/2 ? t^2
?? = 0
?? = 4.3 rad/s
? = - 2.6 rad/s^2

ergo,

?(t) = ?? * t + 1/2 ? * t^2

a. Max will be when
? = -? t
or
t.max = -?/?

[If you know calculus, you set
d?(t)/dt = 0
0 = ? + ? t
? = - ? t]

Sub in for t.max
?.max = ? * (-?/?) + 1/2 ? (- ?/?)^2
?.max = -1/2 ?^2/?
? max = 35.557.... rads

b. and c.

?(t) = ?? * t + 1/2 ? * t^2
Set ?(t) = 1/4 ?.max

1/4 ?.max = ?? * t + 1/2 ? * t^2
1/4 *(-1/2 ?^2/?) = ?? * t + 1/2 ? * t^2
0 = 1/8 ?^2/? + ?? * t + 1/2 ? * t^2

Divide out 1/2 ? (you don't have to, but it is cleaner
0 = 1/4(?/?)^2 + 2(?/?) t + t^2
0 = t^2 + 2(?/?) t + 1/4(?/?)^2

Solve quadric
t = - 2(?/?) /2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At t = 0, a flywheel has an angular velocity of 5.4 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 5.4 rad/s, an angular acceleration of -0.11 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/3? At what (d) negative time and (e) positive time will the reference line be at ? = -13 rad?
At t = 0, a flywheel has an angular velocity of 3.5 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 3.5 rad/s, an angular acceleration of -0.48 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/7? At what (d) negative time and (e)positive time will the reference line be at ? = -11 rad?
At t = 0, a flywheel has an angular velocity of 9.2 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 9.2 rad/s, an angular acceleration of -0.44 rad/s2, and a reference line at ?0 = 0. (a) Through what maximum angle ?max will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at ? = ?max/2? At what (d)negative time and (e) positive time will the reference line be at ? = -15 rad?
At t = 0, a flywheel has an angular velocity of 9.1 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 9.1 rad/s, an angular acceleration of -0.16 rad/s2, and a reference line at θ0 = 0. (a) Through what maximum angle θmax will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at θ = θmax/3? At what (d) negative time and (e) positive time will the reference line be at θ = -8.1 rad?
At t = 0, a flywheel has an angular velocity of 3.2 rad/s, an angular acceleration...
At t = 0, a flywheel has an angular velocity of 3.2 rad/s, an angular acceleration of -0.15 rad/s2, and a reference line at θ0 = 0. (a) Through what maximum angle θmax will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at θ = θmax/5? At what (d) negative time and (e) positive time will the reference line be at θ = -7.7 rad?
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a...
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a constant angular acceleration of 33.0 rad/s2 until a circuit breaker trips at time t = 2.40 s . From then on, it turns through an angle 433 rad as it coasts to a stop at constant angular acceleration. A-Through what total angle did the wheel turn between t=0 and the time it stopped? B-At what time did it stop? C-What was its acceleration as...
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a...
At t=0 a grinding wheel has an angular velocity of 21.0 rad/s . It has a constant angular acceleration of 33.0 rad/s2 until a circuit breaker trips at time t = 1.70 s . From then on, it turns through an angle 440 rad as it coasts to a stop at constant angular acceleration. 1.Through what total angle did the wheel turn between t=0 and the time it stopped? 2.At what time did it stop? 3.What was its acceleration as...
At t=0 a grinding wheel has an angular velocity of 30.0 rad/s . It has a...
At t=0 a grinding wheel has an angular velocity of 30.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until a circuit breaker trips at time t = 1.90 s . From then on, it turns through an angle 440 rad as it coasts to a stop at constant angular acceleration. Q1: Through what total angle did the wheel turn between t=0 and the time it stopped? Q2: At what time did it stop? Q3: What was...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 23.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until a circuit breaker trips at time t = 2.10 s . From then on, the wheel turns through an angle of 436 rad as it coasts to a stop at constant angular deceleration Part A) Through what total angle did the wheel turn between t=0 and the time it stopped? Part B) At what time does...
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has...
At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has a constant angular acceleration of 28.0 rad/s2 until a circuit breaker trips at time t = 2.00 s . From then on, the wheel turns through an angle of 440 rad as it coasts to a stop at constant angular deceleration. A-Through what total angle did the wheel turn between t=0 and the time it stopped? Express your answer in radians. B-At what time...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT