Question

A parallel plate capacitor has plates with area 10 cm2 and a gap of 2 mm....

A parallel plate capacitor has plates with area 10 cm2 and a gap of 2 mm. First, find the capacitance of this capacitor. Now, imagine a metal plate of thickness 0.25 mm and the same size and shape as the other two plates is slid into the gap. This creates two new parallel plate capacitors. Label them C1 and C2. If the gap for C1 is 1 mm, find the values of C1, C2, and Cseries. What happens to C1, C2, and Cseries as the gap for C2 is made smaller?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If...
1. Three capacitors are connected in series and give an effective capacitance of 22 nF. If C1 = 5 µF and C3 = 100 nF, what is C2? Suppose V1 = 5 V. Find the charge on and voltage across the other two capacitors. Again, calculate energy stored. 2. A parallel plate capacitor has plates with area 10 cm2 and a gap of 2 mm. First, find the capacitance of this capacitor. Now, imagine a metal plate of thickness 0.25...
. An air-filled parallel-plate capacitor has plates of area 2.45 cm2 separated by 1.25 mm. The...
. An air-filled parallel-plate capacitor has plates of area 2.45 cm2 separated by 1.25 mm. The capacitor is connected to a 9.0 V battery. (a) Find the value of its capacitance. (b) What is the charge on the capacitor? (c) What is the magnitude of the uniform electric field between the plates?
An air-filled parallel-plate capacitor has plates of area 0.47 cm2 separated by 4.1 mm. The capacitor...
An air-filled parallel-plate capacitor has plates of area 0.47 cm2 separated by 4.1 mm. The capacitor is conected to a 12-V battery. (a) Find the value of its capacitance 0.355  F 0.152  F 0.072  F 0.101  F (b) What is the charge on the capacitor? 0.008  C 1.217  C 1.826  C 12.00  C (c) What is the magnitude of the uniform electric field between the plates? 3.42 N/C 2,926.83 N/C 1,463.41 N/C 12 N/C (d) Find the magnitude of the charge density on each plate. 1.363 C/m2 7.382...
A parallel-plate air-filled capacitor having area 58 cm2 and plate spacing 0.89 mm is charged to...
A parallel-plate air-filled capacitor having area 58 cm2 and plate spacing 0.89 mm is charged to a potential difference of 520 V. Find (a) the capacitance, (b) the magnitude of the charge on each plate, (c) the stored energy, (d) the electric field between the plates, (e) the energy density between the plates.
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm...
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm is charged by a battery of 60-V If the air between the plates is replaced by a dielectric of k= 4, but the battery disconnected before the dielectric inserted, 1) Find the capacitance of the capacitor. 2) What is the charge on the capacitor? 3) What is the energy stored in the capacitor? please explain. Thank you
A parallel-plate air-filled capacitor having area 60 cm2 and plate spacing 4.0 mm is charged to...
A parallel-plate air-filled capacitor having area 60 cm2 and plate spacing 4.0 mm is charged to a potential difference of 450 V. Find (a) the capacitance,__13.3  pF (b) the magnitude of the charge on each plate, ___5.985nC (c) the stored energy, _____µJ (d) the electric field between the plates, and _112500_ V/m (e) the energy density between the plates. _(e) the energy density between the plates. show all work pleas
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation...
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation distance d1. It is filled with a dielectric made of mylar (κ=3.1). With these conditions, it has a capacitance C1. A second parallel plate capacitor (denoted as Capacitor 2) has the same plate area as the first capacitor (A1 = A2) but the separation distance is twice as large (d1 = ½ d2). The second capacitor is filled with the same dielectric (mylar) and...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.80 cm2 and an air-filled separation of 2.90 mm, are charged by a 5.90 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.90 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled separation of 4.20 mm, are charged by a 7.20 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 7.40 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled...
The parallel plates in a capacitor, with a plate area of 6.10 cm2 and an air-filled separation of 4.50 mm, are charged by a 8.70 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.80 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.