Question

The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25...

The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25 H, and C = 198 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V.

1-Find the inductive reactance, capacitive reactance, and impedance.

XL = ........ Ω
XC = ........ Ω
Z = ......... Ω


2-Find the phase difference between current and voltage.............
°

3-Find the voltages ΔvR, ΔvL, and ΔvC.

ΔvR = ........ V
ΔvL =......... V
ΔvC =......... V

Homework Answers

Answer #1

given

R=1.49 Ohm

L=1.25 H

C=198 micro farady=198*10-6 F

f=60 Hz

inductive reactance

in three significant figure

-----------------------------------------------------------------------------------------------------

capacitive reactance

-----------------------------------------------------------------------------

impedance

in three significant figure

=============================================================

2

phase difference

================================================

3.

since the resistance , inductor and capacitor are in series then the current flowing through the circuit

so the potential of resistor

----------------------------------------------------------------

voltage through the inductor

--------------------------------------------------

voltage through the capacitor

all answers are in three significant figure

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Now Tiva and Graciela try a problem from the book. The RLC series circuit illustrated in...
Now Tiva and Graciela try a problem from the book. The RLC series circuit illustrated in the simulation has R = 1.2 Ω, L = 1.02 H, and C = 183 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V. Find the inductive reactance, capacitive reactance, and impedance. XL =____ Ω XC =____ Ω Z =____ Ω Find the phase difference between current and voltage. ° Find the...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance...
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance is 23.5 Ω, and the maximum voltage across the 84.9 Ω resistor is 34.9 V. What is the maximum voltage across the circuit? please answer both exercise not only one this is 2 essential questions 2. Consider a series RLC circuit where the resistance ?=447 Ω , the capacitance ?=3.25 μF , and the inductance ?=85.0 mH . What is the maximum current ?max  when...
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find...
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find the reactance XC. Find the impedance Z. Find the current amplitude I. Find the phase angle ϕ. Find the voltage amplitude across the resistor. Find the voltage amplitude across the inductor. Find the voltage amplitude across the capacitor.
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is...
A series circuit consisted of R= 150 Ω, L= 120 mH , C= 4700 µF is connected to an alternative voltage of V rms = 12 V and frequency of 60 Hz. Find the following quantities in questions a thorough I. You are required to show the formula with the correct symbols - substitute- calculate- answer and the unit for each question. HINT: The first one has been done as an example of how you need to do the problem...
In a certain series RLC circuit, Irms = 9.00 A, ΔVrms = 245 V, and the...
In a certain series RLC circuit, Irms = 9.00 A, ΔVrms = 245 V, and the current leads the voltage by 34.0°. (a) What is the total resistance of the circuit? Ω (b) Calculate the reactance of the circuit (XL − XC). Ω
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency...
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency f = 60 Hz. The load resistance R and reactance values of the inductor L and the capacitor C of the circuit are given by R = 50 , XL = 50 , XC = 150 , respectively What is the impedance of the circuit? What is the peak current amplitude in the circuit? What is the phase angle  of the circuit? The...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8 ?F. It is connected to an AC source with f = 60.0 Hz and ?Vmax = 150 V. Suppose the frequency is now increased to f = 93 Hz, and we want to keep the impedance unchanged. (a) What new resistance should we use to achieve this goal? R = ____ ? (b) What is the phase angle (in degrees) between the current and...
If the maximum voltage coming from the AC source is 25V, and is hooked up to...
If the maximum voltage coming from the AC source is 25V, and is hooked up to a LRC series circuit where R=444 Ω, L=0.333 mH and C=222pF find the following a. Resonant Frequency For the following find them at the resonant frequency. b. Inductive reactance, XL, Capacitive reactance XC, and the impedance Z c. I R M S d. V R M S across the resistor, the inductor and capacitor.
5)A series circuit consisted of R= 4.7?, L= 2.0 mH , 2200 µF is connected to...
5)A series circuit consisted of R= 4.7?, L= 2.0 mH , 2200 µF is connected to an alternative voltage with maximum voltage of Vm = 12.0 V and frequency of 60.0 Hz. Find the following- show the formula- substitute- calculate – put final result in a box with its unit, a ) Inductive Reactance b)Capacitive Reactance c) Impedance d)maximum current in the circuit e) Voltage across the resister f)Voltage across the inductor. g)Voltage across the capacitor h) RMS voltage across...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT