Question

A circular coil with radius r and N turns rotates in a magnetic field B with...

A circular coil with radius r and N turns rotates in a magnetic field B with angular velocity ω. The coil is connected to a resistor with resistance R. Find the average power delivered to the resistor.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field...
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.
A circular coil (d = 28 cm, N = 113 turns) is placed in a region...
A circular coil (d = 28 cm, N = 113 turns) is placed in a region of space where there is no magnetic field. Suddenly, a magnetic field is turned on and the coil is totally immersed in it. The magnetic field reaches the strength of 950 mT in 3.5 ms. Determine the voltage induced across the coil Determine the current through a 23 Ω resistor connected across the coil.
A coil 4 cm in radius, containing 500 turns, is placed in a uniform magnetic field...
A coil 4 cm in radius, containing 500 turns, is placed in a uniform magnetic field that varies with time according to B = 5.0 -0.1t + .012t^3 – 1.5e-0.3^t Tesla. The coil is connected to a 100 Ω resistor with its plane being perpendicular to the magnetic field. (i) What will be the emf generated in the coil as a function of time? (ii) What will be the current in the resistor at a time t = 5 sec...
A circular coil with resistance R has N turns, each of length l and width w....
A circular coil with resistance R has N turns, each of length l and width w. The coil moves into a uniform magnetic field B with constant velocity v. The direction of the magnetic field is into the page. What are the magnitude and direction of the total magnetic force on the coil for the following situations? (Use the following as necessary N, B, w, v, and R) (a) as it enters the magnetic field (b) as it moves within...
A flat circular coil with 96 turns, a radius of 3.72 10-2 m, and a resistance...
A flat circular coil with 96 turns, a radius of 3.72 10-2 m, and a resistance of 0.432 Ω is exposed to an external magnetic field that is directed perpendicular to the plane of the coil. The magnitude of the external magnetic field is changing at a rate of ΔB/Δt = 0.837 T/s, thereby inducing a current in the coil. Find the magnitude of the magnetic field at the center of the coil that is produced by the induced current.
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a...
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.9 Ω resistor to create a closed circuit. During a time interval of 0.141 s, the magnetic field strength decreases uniformly from 0.539 T to zero. Find the energy ? in millijoules that is dissipated in the resistor during this time interval.
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 11.9 Ω resistor to create a closed circuit. During a time interval of 0.161 s, the magnetic field strength decreases uniformly from 0.673 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy:____________ mJ
A circular coil of wire (N=10 turns) of radius 0.20 m is in a uniform magnetic...
A circular coil of wire (N=10 turns) of radius 0.20 m is in a uniform magnetic field of 0.50 T. The current in the loop is 4.0 A. What is the magnetic torque when the plane of the loop is parallel to the magnetic field?
A physics technician makes a circular coil consists of 120 turns of copper wire with a...
A physics technician makes a circular coil consists of 120 turns of copper wire with a resistance of 0.6 Ω. The coil radius is 6 cm. the coil is connected to a 12 V battery. (a) Calculate the magnetic moment of the coil. (b) If the coil was placed between the pole faces of a magnet where the magnetic field strength was 0.5 T, calculate the maximum torque on the coil.
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic...
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.  (20 pts.)