Question

A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving...

A proton of mass mp=1.67×10−27 kgmp​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cqp​​=1.60×10​−19​​ C is moving through vacuum at a constant velocity of 10,000 m/s10,000 m/s directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of ∣E⃗∣=∣​E​⃗​​∣=2520 N/C N/C . The region of uniform electric field is 5 mm wide in the east-west direction. How far (in meters) will the proton have been deflected towards the south by the time it exits the region of uniform electric field. You may neglect the effects of friction and gravity, and assume that the electric field is zero outside the specified region.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton of mass mp = 1.67 × 10-27 kg and charge qp = 1.602 ×...
A proton of mass mp = 1.67 × 10-27 kg and charge qp = 1.602 × 10-27 C is in an electric field of E = 10 N/C that points upwards. Draw a free body diagram for the proton, and calculate the electrical-to-gravitational force ratio: FE/FG. Finally, remark on whether the gravitational force is likely to be significant for an electron in an 10 N/C electric field.
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic field B⃗ =( 0.530 T )i^. At t = 0 the proton has a velocity components vx = 1.60×105 m/s , vy=0, and vz = 1.90×105 m/s . What is the magnitude of the magnetic force acting on the proton? What is the direction of the magnetic force acting on the proton? In addition to the magnetic field there is a uniform electric field...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent with velocity 7.1 × 104 m/s in the +x direction into a region where there is a uniform electric field of magnitude 730 V/m in the +y direction. What are the magnitude and direction of the uniform magnetic field in the region, if the proton is to pass through undeflected? Assume that the magnetic field has no x-component and neglect gravitational effects. Draw a...
A proton with a charge qp = +e = +1.60 × 10–19 C moves with a...
A proton with a charge qp = +e = +1.60 × 10–19 C moves with a speed v = U × 105 m/s East through the Earth’s magnetic field, which has a value of B = 55.0 ?T and points northward at a particular location. What is the strength of the magnetic force F when the proton moves eastward?
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling...
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling at 90.0° with respect to the direction of a magnetic field of strength 4.50 mT experiences a magnetic forceof 7.50 X 10-17 N. The proton's  kinetic energy is:
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
The mass of a proton, mp, is estimated to be 1.67×10^−27 kg, and the mass of...
The mass of a proton, mp, is estimated to be 1.67×10^−27 kg, and the mass of an electron, me, is estimated to be 9.109 ×10^−31 kg. How many protons would it take to make a mass of 1g? 1kg? 1kg? How many electrons would it take to make a mass of 1g? 1kg?
A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as...
A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as shown below with a magnitude of v = 2.50 × 105 m/s. Take the proton mass to be M = 1.67 × 10−27 kg. The proton moves in a plane perpendicular to a 3.00 Tesla uniform magnetic field Calculate the radius, in meters, of the circular path followed by the proton. With respect to the magnetic field lines, are the orbits in the clockwise...
A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to...
A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to a uniform electric field 2.3 x105 V/m between the plates shown in the figure. If the initial velocity is 1.9 x 105 m/s, find the magnitude of its final velocity in m/s. (* Ignore gravity)
An proton (mass=1.67*10^-27 kg) is accelerated in the uniform field E (E=1.70*10^4 N/C) between two parallel...
An proton (mass=1.67*10^-27 kg) is accelerated in the uniform field E (E=1.70*10^4 N/C) between two parallel charged plates. The separation of the plates is 2.30 cm. The proton is acerbated from the rest near the positive plate and crashes into the negative plate. With what speed does it crash into the negative plate?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT