Question

Two blocks are connected by a massless string that runs across a frictionless pulley with a...

Two blocks are connected by a massless string that runs across a frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm. The first block with an unknown mass of m1 sits on a horizontal surface and is also connected to a spring with a spring constant of k = 250 N/m. The coefficient of kinetic friction between the first block and the surface is 0.400. The second block with a mass of m2 = 6.00 kg hangs off the edge of the surface. Initially both blocks are at rest and the spring is at its equilibrium position. After you let the blocks go, both blocks are moving with a speed of 0.200 m/s after block 2 has fallen 10.0 cm. What is the mass of the first block?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00 kg block hangs by a light string that passes over a massless, frictionless pulley...
A 4.00 kg block hangs by a light string that passes over a massless, frictionless pulley and is connected to a 6.00 kg block that rests on a frictionless shelf. The 6.00 kg block is pushed agaisnt a spring to which it is not attached. THe spring has a spring constant of 180 N/m , and it is compressed by 30.0cm. Find the speed of the block after the spring is released and the 4.00 kg block has fallen a...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown in the figure. Block A, with a mass mA = 2.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces and the constant-acceleration equations, but see if you can apply energy ideas instead. Use g = 10 m/s2. When the system is released...
Two blocks of masses of 2.00 kg and 4.00 kg are connected by a massless string...
Two blocks of masses of 2.00 kg and 4.00 kg are connected by a massless string going over a smooth, massless pulley. The table on which the smaller mass rest is frictionless. The other side of the 2.00 kg mass is connected to a spring of k=250 N/m and the far end of the spring is tied to a fixed point. The system is release from rest with the spring at its relaxed length. A.) what is the speed of...
Two blocks are attached to opposite ends of a string that passes over a massless, frictionless...
Two blocks are attached to opposite ends of a string that passes over a massless, frictionless pulley (see the figure). Block ? of mass 10.0 kg lies on a 60.0° incline with a coefficient of friction of 0.500, and block ? of mass 1.00 kg is attached to a vertical spring of force constant 200 N/m. The blocks are initially at rest with the spring at equilibrium. Find the maximum height that the block ? rises.
Two masses are connected by a massless string and a frictionless pulley. The masses of the...
Two masses are connected by a massless string and a frictionless pulley. The masses of the blocks are; m1=500 g and m2= 150g. The coefficiant of friction between m1 and the surface is 0.25. (a) What is the acceleration of the masses? (b) What is the tension in the string?
Two blocks hang from either end of a massless rope that runs over a pulley, treated...
Two blocks hang from either end of a massless rope that runs over a pulley, treated as a thin solid disk, (An Atwood's Machine), and are held in place. One block has a mass of 12.0 kg, the pulley has a mass of 2.00 kg and radius 5.00 cm, and the other block's mass is unknown. The blocks are released from rest, and after an unspecified period of time, the block of known mass has descended 2.50 m and has...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 310  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.35.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.6m.
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
In the figure, the two blocks are attached by a massless rope over a frictionless pulley,...
In the figure, the two blocks are attached by a massless rope over a frictionless pulley, and block M1 slides on the table without friction. The masses of the blocks are: M1 = 7.90kg and M2 = 3.70kg. Calculate the tension in the rope. ( g = 9.80 m/s2)
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown...
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown in the diagram. Mass m1 = 5 kg, and is released from rest at a height h = 4 m above the table. Mass m2 = 3 kg, and starts at rest on the table. Ignore friction and air resistance. Take the system to be the two masses and the earth. What is the potential energy of this system, in Joules? Next, you let...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT