Question

An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A...

An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A positive charged particle of mass 1.92 x 10-20 kg is placed at the positive plate and released. If its speed at the negative plate is 21,000 m/s:

A) find the work done on the charge.

B) find the potential difference between the plates

C) find the charge on the particle

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A...
An electric field of 120 N/C is maintained between two plates separated by 10.0 cm. A positive charged particle of mass 1.92 x 10-20 kg is placed at the positive plate and released. If its speed at the negative plate is 21,000 m/s, find: a)the work done on the charge. b)the potential difference between the plates c) the charge on the particle. Show all the steps and state the answer as clear as possible please. Thank you.
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
Two large, flat parallel plates are separated by 0.007 m. The negative plate is grounded and...
Two large, flat parallel plates are separated by 0.007 m. The negative plate is grounded and the positive plate has an electrical potential of 450 V. A singly-charged particle is released from rest at the positive plate and hits the negative plate 3.0×10-6 s later. a) What is the magnitude of the electric field between the plates? b) What is the magnitude of the electric force on the particle? C)What is the magnitude of the acceleration of the particle? d)What...
Two parallel conducting plates are separated by 10.0 cm, and one of them is taken to...
Two parallel conducting plates are separated by 10.0 cm, and one of them is taken to be at zero volts. (a) What is the magnitude of the electric field strength between them, if the potential 7.25 cm from the zero volt plate (and 2.75 cm from the other) is 333 V? _______kV/m (b) What is the absolute value of the potential difference between the plates? _______V
The electric field between two square metal plates is 350 N/CN/C . The plates are 2.0...
The electric field between two square metal plates is 350 N/CN/C . The plates are 2.0 mm on a side and are separated by 1.0 cm. What is the charge on each plate (assume equal and opposite)? Neglect edge effects.
A uniform electric field of magnitude 624 N/C exists between two parallel plates that are 3.98...
A uniform electric field of magnitude 624 N/C exists between two parallel plates that are 3.98 cm apart. A proton is released from rest at the positive plate at the same instant an electron is released from rest at the negative plate. (a) Determine the distance from the positive plate at which the two pass each other. Ignore the electrical attraction between the proton and electron. m (b) Repeat part (a) for a sodium ion (Na+) and a chloride ion...
Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above...
Two horizontal metal plates, each 10.0 cm square, are aligned 1.00 cm apart with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2.04 103 N/C exists in the region between them. A particle of mass 2.00 10-16 kg and with a positive charge of 1.03 10-6 C leaves the center of the bottom negative plate with an initial speed of 1.05 105 m/s at an angle of 37.0°...
A uniform electric field exists in a region between two oppositely charged plates. An electron is...
A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 5.0 cm away, in a time 1.9 ✕ 10−8 s. (a) What is the speed of the electron as it strikes the second plate? (b) What is the magnitude of the electric field ?
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric...
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric field of 3.05×106 N/C between them. A proton is fired perpendicular to these plates, starting at the middle of the negative plate and going toward the positive plate. How much work has the electric field done on this proton by the time it reaches the positive plate? Answer in Joules.
Two large parallel plates each have an area of 250 cm^2 . When the two plates...
Two large parallel plates each have an area of 250 cm^2 . When the two plates are separated by air, the system has a capacitance of 2.1 nF . The first plate has a charge of +20 nC and the second plate has a charge of −20 nC . (a) What is the separation between the two plates? (b) What is the potential difference between the two plates? Which plate has a larger potential? (c) What is the magnitude and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT