Question

A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the...

A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the horizontal. After sliding down the ramp a distance L=16 m the block encounters a spring of spring constant k=551 N/m. The spring is parallel to the ramp. Use g=9.74 m/s/s for the acceleration of gravity.

Calculate the maximum compression of the spring, in meters. Include labeled diagrams showing the initial and final configurations, and a discussion of the solution method based on energy conservation.

B. Your mass m=9 kg block slides on a frictionless horizontal surface with initial velocity v0=26 m/s until it encounters a patch of the surface having friction coefficient mu(x) =c xn where n=4, c=2.32 m-n, and x is the distance into the patch. Use g=9.72 m/s/s.

Calculate the distance into the patch where the block stops, in meters, assuming the patch has sufficient length to stop the block. draw a clearly labeled diagram

Homework Answers

Answer #1

Solution in the uploaded image

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.62 kg car slides 0.24 m down a frictionless ramp at an angle of 30...
A 0.62 kg car slides 0.24 m down a frictionless ramp at an angle of 30 degrees. It travels across a frictionless surface and into a spring with k = 55 N/m. Determine the maximum acceleration of the toy car after it hits the spring.
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp...
1. A 2 kg block is on a ramp, and slides down the ramp. The ramp has angle 30 degrees with respect to the ground and moves the block at a constant velocity. The block has a displacement vector with a magnitude of 6 m. What is the work done on the block by thefrictional force? 2. A 0.2 kg block is on a ramp. The ramp has an angle of 30 degrees with respect to the ground. The block...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface...
A 1.40 kg block slides with a speed of 0.950 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 734 N/m. The block comes to rest after compressing the spring 4.15 cm. Find the spring potential, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of (a) 0 cm, (b) 1.00 cm, (c) 2.00 cm, (d) 3.00 cm, (e) 4.00 cm
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The...
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The spring has a spring constant of 1180 N/m and is compressed a distance, x, before being released. The block slides up a frictionless ramp of height, H=0.550 m, above where the block leaves the spring. At the top of the ramp it flies horizontally off the ramp. Just before leaving the ramp, the kinetic energy of the block is 8.54 J. After leaving the...
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m,...
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m, and encounters a loop that is 1.0 m high. (a) What is the speed of the block at the top of the loop? (b) The block is slowed by a spring at the bottom of the track. If the stiffness of the spring is 0.90 kN/m, how far does the block slide before coming to rest?
The horizontal surface on which the block slides is frictionless. The speed vi of the block...
The horizontal surface on which the block slides is frictionless. The speed vi of the block of mass m= 2.0 kg before it touches the spring is 10 m/s. After the spring is compressed by 0.20 m, the block starts to move back to the right. What is the velocity vf of the block in m/s when the spring is compressed by 0.15m ?
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the horizontal. The acceleration of gravity is 9.81 m/s2 . a) Find the work done by the gravitational force when the block slides 5.9 m (measured along the incline). b) What is the total work done on the block? c) What is the speed of the block after it has moved 5.9 m if it starts from rest? d) What is its speed after 5.9...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT