Question

1.The human ear canal is about 2.3 cm long. If it is regarded as a tube...

1.The human ear canal is about 2.3 cm long. If it is regarded as a tube open at one end and closed at the eardrum, what is the fundamental frequency around which we would expect hearing to be most sensitive?
?kHz

2. An airplane traveling at half the speed of sound emits a sound of frequency 5.30 kHz.

(a) At what frequency does a stationary listener hear the sound as the plane approaches?
? kHz

(b) At what frequency does a stationary listener hear the sound after the plane passes?
?kHz

3.A piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m is under a tension of 1,400 N. Find the speed with which a wave travels on this string.
? m/s

4.A hammer strikes one end of a thick aluminum rail of length 6.58 m. A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the air and a longitudinal wave that travels through the rail. (The speed of sound in air is 343 m/s.)

(a) Which pulse reaches the microphone first?

the pulse traveling through the aluminum railthe pulse traveling through the air     


(b) Find the separation in time between the arrivals of the two pulses.
? ms

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail. A...
When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail. A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the rail and the other travels through the air. The two pulses are detected at 20.0 milliseconds apart. The speed of sound in aluminum is 6.42×10^3 m/s. (a) Determine the length of the rail. (b) If the air temperature increases to +45.0°C, determine the separation in...
When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail. A...
When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail. A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the rail and the other travels through the air. The two pulses are detected at 20.0 ms apart. The speed of sound in aluminum is 6.42×103 m/s. (a) Determine the length of the rail. (b) If the air temperature increases to +45.0°C, determine the separation in...
. When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail....
. When the air temperature is −40.0°C, a hammer strikes one end of an aluminum rail. A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the rail and the other travels through the air. The two pulses are detected at 20.0 ms apart. The speed of sound in aluminum is 6.42×103 m/s. (a) Determine the length of the rail. (b) If the air temperature increases to +45.0°C, determine the separation...
2. When the air temperature is -40.0 degreeC, a hammer strikes one end of an aluminum...
2. When the air temperature is -40.0 degreeC, a hammer strikes one end of an aluminum rail. A microphone located at the opposite end of the rail detects two pulses of sound, one that travels through the rail and the other travels through the air. The two pulses are detected at 20.0 ms apart. The speed of sound in aluminum is 6.42×10^3 m/s. (a) Determine the length of the rail. (b) If the air temperature increases to +45.0 degree C,...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked and is producing a note of frequency 334 Hz. (a) What is the speed of transverse traveling waves on this guitar string? Give your answer in m/s. HINT: The note you hear is produced by the vibrational mode of the string which has the fundamental (lowest possible) frequency. Draw a picture of the string vibrating in that mode and determine the wavelength of the...
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are...
Two small speakers are separated by a distance of 4 cm, as shown. The speakers are driven in phase with a sine wave signal of frequency 10 kHz. A small microphone is placed a distance 1.1 m away from the speakers on the axis running through the middle of the two speakers, and the microphone is then moved perpendicular to the axis. Where does the microphone record the first minimum of the interference pattern from the speakers as measured from...
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a...
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a sound of frequency 790 Hz from the car horn and a sound of frequency 873 Hz from the wall. (a) How fast is the car traveling? .......... km/h (b) What is the frequency of the car horn? ........... Hz (c) What frequency does the car driver hear reflected from the wall? ............ Hz ------------------------------------------------------------------------------------------------ 2) A bat flying toward an obstacle at 10 m/s...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If the tension in the cord is 140 N, how long will it take a pulse to travel from one support to the other? 2. A 50.0 Kg ball hangs from a steel wire 1.00 mm in diameter and 6.00 m long. What would be the speed of a wave in the steel wire? 3. The intensity of an earthquake wave passing through the earth...
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed...
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed at the other. A taut string has a mass of 2 g, a length of 4.0 m and is under a tension of 5120 N. Determine which of the harmonics of the pipe, if any, are resonant with the harmonics of the string. [The speed of sound in air is 340
A rod 2 m long, 2 cm in diameter and 5 kg in mass is fixed...
A rod 2 m long, 2 cm in diameter and 5 kg in mass is fixed at one end and is stricken by a force F to produce a 3rd overtone and elongates at 1 cm. A string of length L and mass 750 grams is puled by a T = 30 to produce a 3rd harmonic frequency. Determine the force F and length L that produces the same value of frequencies in the two materials, if the sound wave...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT