Question

A very thin sheet of plastic (n = 1.60) covers one slit of a double-slit apparatus...

A very thin sheet of plastic (n = 1.60) covers one slit of a double-slit apparatus illumi- nated by 640 nm light. The center point on the screen, instead of being a maximum, is dark. What is the minimum thickness of the plastic?

Homework Answers

Answer #1


Given

   plastic refractive index n = 1.6

  

wavelength of the light is Lambda = 640 nm


the optical path difference is Delta = (n-1)t


due to plastic sheet , minimum firnge formed instead of maximum on screen so t

the condition for minimum is mimumum delta = Lambda/2

   so (n-1)t = lambda /2

       t = lambda/2(n-1)
       t = (640*10^-9) /2(1.6-1) m

       t = 5.33333*10^-7 m
  
       t = 533.33 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits...
In Young's double-slit experiment, 632.8 nm light from a HeNe laser passes through the two slits and is projected on a screen. As expected, a central maximum (constructive interference) is observed at the center point on the screen. Now, a very thin piece of plastic with an index of refraction n=1.48 covers one of the the slits such that the center point on the screen, instead of being a maximum, is dark. Part A Determine the minimum thickness of the...
A thin sheet of plastic (n = 1.60) is inserted between two panes of glass to...
A thin sheet of plastic (n = 1.60) is inserted between two panes of glass to reduce infrared (l = 700 nm) losses. What thickness (in nm) is necessary to produce constructive interference in the reflected infrared radiation? a. 55 b. 318 c. 109 d. 218 e. 443 please show work
Consider a double slit apparatus that produces several dark minima. The third from the center dark...
Consider a double slit apparatus that produces several dark minima. The third from the center dark minimum is at 45.0° for 630-nm light. a.)What is the separation between the double slits, in meters? b.)What slit separation, in meters, would be needed to produce the same pattern for 1.00-keV protons? c.)What is the problem with extending the results from part (a) to part (b)?
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2. A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55...
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in cm) between the 2nd and 3rd dark fringes?
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55...
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe?
Consider a double slit apparatus that produces several dark minima. The third from the center dark...
Consider a double slit apparatus that produces several dark minima. The third from the center dark minimum is at 45.0° for 635-nm light. a.)What is the separation between the double slits, in meters? b.)What slit separation, in meters, would be needed to produce the same pattern for 1.00-keV protons? c.)What is the problem with extending the results from part (a) to part (b)? a. Protons with that much energy will not diffract. b. Light is a wave, but a proton...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index of refraction 1.30) of unknown thickness that covers glass (index of refraction 1.50). What minimum non-zero thickness is needed such that wavelengths of 650 nm in air are bright in the reflection? 2. You observe two point sources of light that are spaced 10 cm apart which are each emitting light of wavelength of 590 nm. If the diameter of your pupil is 2...
A Young’s double-slit apparatus is illuminated with 669 nm light and the screen is positioned 2.2...
A Young’s double-slit apparatus is illuminated with 669 nm light and the screen is positioned 2.2 m from the double slits. If the spacing between the two slits is 0.33 mm … Part a) What is the angle from the center line (the line from the center of the two slits to the central bright spot) to the second order bright spot? Part b) What is the distance from the zeroth order bright fringe and on the screen to the...
A thin film of alcohol (n = 36) lies on a flat glass plate (n =...
A thin film of alcohol (n = 36) lies on a flat glass plate (n = 51). Light whose wavelength can be changed is incident normally on the alcohol. The reflected light is a minimum for l = 512 nm and maximum for l = 640 nm. What is the minimum thickness of the film? 235 nm 94 nm 1412 nm None of the above
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT