Question

Two men (A and B), having weights of 120lbs. and 150lbs., respectively, stand on a 300lb....

Two men (A and B), having weights of 120lbs. and 150lbs., respectively, stand on a 300lb. cart initially at rest. Each runs at a speed of 5 ft/s relative to the cart. Determine the final speed of the cart if man A runs and jumps off, causing the cart to move with man B, and then man B jumps off the same end.

Homework Answers

Answer #1

Let be the mass of A and be its relative velocity wrt cart.

Let be the mass of B and be its relative velocity wrt cart.

Let be the mass of cart and be its velocity when A jumps off and be it velocity when B jumps off. Initially it had 0 velocity.

Then from momentum conservation

After A jumps off we have

.......1

After B jumps off, we have

........2

Solving the equations simultaneously we get

Now lighter A jumps first and then heavier B jumps so

This is the final velocity.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A lumberjack (mass = 103 kg) is standing at rest on one end of a floating...
A lumberjack (mass = 103 kg) is standing at rest on one end of a floating log (mass = 245 kg) that is also at rest. The lumberjack runs to the other end of the log, attaining a velocity of +2.47 m/s relative to the shore, and then hops onto an identical floating log that is initially at rest. Neglect any friction and resistance between the logs and the water. (a) What is the velocity of the first log justbefore...
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with...
Question 1: part a) Cart 1, having mass m1 = 3.0-kg, moving to the right with a speed of 1.0 m/s has a head-on collision with cart 2 of mass m2 = 3.0-kg that is initially moving to the left with a speed of 1.0 m/s. After the collision, the cart 1 is moving to the left with a speed of 1.0 m/s. What is the final velocity of cart 2? part b) An object's velocity of +4.10 m/s changes...
100 lb boy stands at one edge of the skating board. The board is 6 ft...
100 lb boy stands at one edge of the skating board. The board is 6 ft long and weighs 60 lb. Initially, the boy and the board are at rest. The boy then walks 6 ft to the opposite end with a constant speed of 3 ft/s relative to the board. Neglect friction between the board and the ground. Find: (a) Speed of the board [5 pts], and (b) Displacement of the board [3 pts] just as the boy is...
A small 10.0-g bug stands at one end of a thin uniform bar that is initially...
A small 10.0-g bug stands at one end of a thin uniform bar that is initially at rest on a smooth horizontal table. The other end of the bar pivots about a nail driven into the table and can rotate freely, without friction. The bar has mass 50.0 g and is 75 cm in length. The bug jumps off in the horizontal direction, perpendicular to the bar, with a speed of 20.0cm/s relative to the table. a- What is the...
A person stands on a cart initially at rest with three blocks. The cart and person...
A person stands on a cart initially at rest with three blocks. The cart and person and one block together have mass of 300 kg. Also on the cart are two large blocks that he can throw off the back. Block A has a mass of 200 kg, block B has a mass of 100 kg. The person throws each block horizontally away from the cart with a speed of 15 m/s relative to the cart always. Vblock/cart=15 m/s Dolo-...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 30 m/s. The masses of the two objects are 3.0 and 7.6 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 2.3 and 7.1 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...
Car A weighing 4000 lb and car B weighing 3700 lb are at rest on a...
Car A weighing 4000 lb and car B weighing 3700 lb are at rest on a 22-ton flatcar which is also at rest. Cars A and B then accelerate and quickly reach constant speeds relative to the flatcar of 7 ft/s and 3.5 ft/s, respectively, before decelerating to a stop at the opposite end of the flatcar. Neglecting friction and rolling resistance, determine the velocity of the flatcar when the cars are moving at constant speeds.
Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack...
Jack and Zack are standing on a crate at rest on a frictionless horizontal surface. Jack has a mass of 70 kg, Zack has a mass of 45 kg, and the crate has a mass of 15 kg. In what follows, we will see that both jump of the crate. You may assume that they push themselves off with a speed of 4 m/s relative to the crate and in a direction that is essentially horizontal. a) what is the...
Two air carts of mass m1 = 0.83 kg and m2 = 0.45 kg are placed...
Two air carts of mass m1 = 0.83 kg and m2 = 0.45 kg are placed on a frictionless track. Cart 1 is at rest initially, and has a spring bumper with a force constant of 690 N/m. Cart 2 has a flat metal surface for a bumper, and moves toward the bumper of the stationary cart with an initial speed v= 0.66 m/s . Assume that positive x-axis is directed toward the direction of motion of cart 2. a)What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT