Question

Consider a perfectly inelastic collision, where two objects collide with each other, and stick together. The...

Consider a perfectly inelastic collision, where two objects collide with each other, and stick together. The net external force on the system is 0.

  • m1 = 2 kg
  • m2 = 3 kg
  • v01 = 5 m/s
  • v02 = -4 m/s

a) What is their final velocity, after the collision, in m/s? Make sure you get the correct sign.

b) How much kinetic energy was lost in the collision, in Joules?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the following masses and velocities: M1 = 4.5 kg, v1 = 1.5 m/s @ 140o. M2 = 1.5 kg, v2 = 1 m/s @ 180o. a) Find the velocity of the object after the collision. b) How much kinetic energy was lost in the collision.
Two frictionless carts collide and stick together in a perfectly inelastic collision, due to a magnetic...
Two frictionless carts collide and stick together in a perfectly inelastic collision, due to a magnetic or mechanical coupling, on a one-dimensional track. Cart 1 has mass 200 grams and an initial velocity of 2 m/s. Cart 2 has mass 900 g, and is initially stationary. What is the velocity of the two carts together after the collision?
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial...
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial speed of 0.435 m/s the cart to right is initially at rest with mass m2= 0.300kg. a.find the velocity of the center of mass before the carts Collide and stick together b. find the velocity of the center of mass after the carts Collide and stick together c. find the kinetic energy of the system before and after the Collision
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1250 kg and is approaching at 9.5 m/s due south. The second car has a mass of 550 kg and is approaching at 17 m/s due west.Calculate the direction of the final velocity, in degrees south of west, of the cars.What is the change in kinetic energy, in joules, for the collision? (This energy goes into deformation of the cars.)  
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1100 kg and is approaching at 9.5 m/s due south. The second car has a mass of 950 kg and is approaching at 15 m/s due west. Part (a) Calculate the magnitude of the final velocity, in meters per second, of the cars. Part (b) Calculate the direction of the final velocity, in degrees south of west, of the cars. Part (c)...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1350 kg and is approaching at 9.5 m/s due south. The second car has a mass of 750 kg and is approaching at 17.5 m/s due west. Part (a) Calculate the magnitude of the final velocity, in meters per second, of the cars. Part (b) Calculate the direction of the final velocity, in degrees south of west, of the cars. Part (c)...
1) The two objects ( M1=5kg V1=2m/s , M2=3kg V2=-2m/s) collide together after the collision. Find...
1) The two objects ( M1=5kg V1=2m/s , M2=3kg V2=-2m/s) collide together after the collision. Find the velocity of the two objects after the collision. find v1 final and v2 final
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg...
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg m2 = 3 kg v01 = 5 m/s v02 = -4 m/s Use the conservation rules, and algebra, what is the final velocity of mass 1, vf1 in m/s?
Make up a 2D inelastic collision problem, and solve it (two objects stick together) .Your problem...
Make up a 2D inelastic collision problem, and solve it (two objects stick together) .Your problem needs to be unique, so use masses such as 26 kg for one, 590 kg for the other, etc. They both must be moving initially, and also make sure that one of the objects’ velocity is diagonal. One can be moving in the x direction initially, but the other must have an x and y component to it’s initial velocity.
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and is approaching at 9.5 m/s due south. The second car has a mass of 750 kg and is approaching at 17 m/s due west. A) Calculate the magnitude of the final velocity, in meters per second, of the cars. B) Calculate the direction of the final velocity, in degrees, south of west of the cars. C) What's the change...