Question

A car merges onto the freeway on a banked curve. The car maintains a constant velocity...

A car merges onto the freeway on a banked curve. The car maintains a constant velocity 푣 while driving on the curve, which is banked at angle theta and has a radius of curvature R. The car has mass m and the coefficient of static friction between the car’s tires and the road is meu(s). What is the maximum and minimum speed that the car can go around the banked curve without slipping? Hint: The car tends to slip up if the car is going too fast or slip down if the car is going too slow. How do the maximum and minimum speeds change with decreasing angle theta? Do you think that banking a curve increases drivers’ safety? c. What is the only speed that the car can go around a banked curve in the absence of friction (i.e. static friction = 0)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A curve of radius 30 m is banked so that a 950-kg car traveling at 25...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25 miles per hour can round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction between the snowy road...
A road with a radius of 75.0 m is banked so that a car can navigate...
A road with a radius of 75.0 m is banked so that a car can navigate the curve at a speed of 15.0 m/s without any friction. If the banking angle is reduced to zero when a car is going 20.0 m/s on this curve, what minimum coefficient of static friction is needed if the car is to navigate the curve without slipping?
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
A curve at a racetrack has a radius of 600 m and is banked at an...
A curve at a racetrack has a radius of 600 m and is banked at an angle of 7.0 degrees. On a rainy day, the coefficient of friction between the cars' tires and the track is 0.50. Part A. What is the maximum speed at which a car could go around this curve without slipping? Give answer as vmax= and m/s
A BMW is going around a banked curve in the road. It is part of a...
A BMW is going around a banked curve in the road. It is part of a circle with radius 125 m . An automobile that goes around the curve with speed 20 m/s does not require any friction force to not slip, but this BMW is going around the curve at 38.8 m/s. What's the smallest value the coefficient of friction (between the tires of the BMW and the road) that can be without any slipping? Answer= .64 **But, How?**
A 1840-kg car travels on a banked, horizontal curve of diameter 250 m. Find the maximum...
A 1840-kg car travels on a banked, horizontal curve of diameter 250 m. Find the maximum safe speed if the coefficient of friction between the tires and the road is 0.75 and the banking angle is 5.0 degrees. Additionally, what net force does the car experience in this case?
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
Peter Parker is driving to rescue his friends and go through a banked curve of angle...
Peter Parker is driving to rescue his friends and go through a banked curve of angle theta. He did not realize Prowler has frozen the road. Suppose that the radius of curvature of the given curve is 60m and that Peters speed is a uniform 40km/hr. (1km is 1000m). Note that there is no friction due to the road being frozen. Explain what would happen to the car if we were going at 60km/hr instead of 40km/hr.
A curve of radius 90 m is banked for a design speed of 80 km/h. If...
A curve of radius 90 m is banked for a design speed of 80 km/h. If the coefficient of static friction is 0.30 (wet pavement), at what range of speeds can a car safely make the curve? Minimum- ? km/h Maximum - ? km/h
A curve of radius 70 m is banked for a design speed of 100 km/h .If...
A curve of radius 70 m is banked for a design speed of 100 km/h .If the coefficient of static friction is 0.39 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT