Question

(a) You took two 49-g ice cubes from your −14 C kitchen freezer and placed them...

(a) You took two 49-g ice cubes from your −14 C kitchen freezer and placed them in 201 g of water in a thermally insulated container. If the water is initially at 24 C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? Hint: Watch out for the different possibilities!

Homework Answers

Answer #1

a)

Q1 be the energy required to bring the water to 0C

Q1 = m1 c DT

Q1 = 4.2*201*24

Q1=20260.8 J

let Q2 nbe energy reqired to bring ice to 0C

Q2 = m2 C dT

Q2 = 2.03*2*14*49

Q2 =2785.16 J

energy required for both the cubes to melt = Q3 = m c DT

Q3 = 334*2*49

Q3 =32732 Joules

now since 32732+2785.16 > 20260.8

hence the amount of energy required for the ice cubes to melt is greater than that required for the water to come to 0C.


hence the final temperature is 0C.
---------------------------
let the final temperature be T

accroingly from the principle of calorimetry

we have energy lost=energy gained

if there is only one ice cube, enthalpy of fusion of ice = 16366

enthalpy of reaching to 0C from -14C = 1392.58 J

so total energy required for the ice to melt = 16366 + 1392.58 =17758.6 J

from the principle of calorimtery

we get 4.2*201*(24-T) = 17758.6 + 4.2*49*(T-0)

Solving for T,

T= 2.38 C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) You took two 49-gram ice cubes from your -14C kitchen freezer and placed them in...
(a) You took two 49-gram ice cubes from your -14C kitchen freezer and placed them in 201 g of water in a thermally insulated container. If the water is initially at 24C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? Hint: Watch out for the different possibilities!
You took two 48 g ice cubes from your -13 C kitchen freezer and placed them...
You took two 48 g ice cubes from your -13 C kitchen freezer and placed them in 200 g of water in a thermally insulated container. If the water is initally at 24 C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used?
(a) Two 64 g ice cubes are dropped into 278 g of water in a thermally...
(a) Two 64 g ice cubes are dropped into 278 g of water in a thermally insulated container. If the water is initially at 25°C, and the ice comes directly from a freezer at −15°C, what is the final temperature at thermal equilibrium? (in celcius) (b) What is the final temperature if only one ice cube is used? (in celcius)
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
1. An ice cube weighing 18g is removed from a freezer, where it has been at...
1. An ice cube weighing 18g is removed from a freezer, where it has been at -20oC. a. How much heat is required to warm it to 0oC without melting it? b. How much additional heat is required to melt it to liquid water at 0 oC? c. Suppose the ice cube was placed initially in a 180 g sample of liquid water at +20 oC in an insulated (thermally isolated) container. Describe the final state when the system has...
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C....
A 49 g ice cube at -69°C is placed in a lake whose temperature is 32°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C....
A 49 g ice cube at -37°C is placed in a lake whose temperature is 77°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0 degreesC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in degreesC with 3 significant figures. Specific heat of ice: 2.090 J/(g∙ oC) Specific heat of water: 4.186 J/(g∙ oC) Latent heat of fusion for water:...
Three 102.0-g ice cubes initially at 0°C are added to 0.810 kg of water initially at...
Three 102.0-g ice cubes initially at 0°C are added to 0.810 kg of water initially at 18.0°C in an insulated container. (a) What is the equilibrium temperature of the system? (b) What is the mass of unmelted ice, if any, when the system is at equilibrium?
Three 114.0-g ice cubes initially at 0°C are added to 0.830 kg of water initially at...
Three 114.0-g ice cubes initially at 0°C are added to 0.830 kg of water initially at 19.5°C in an insulated container. (a) What is the equilibrium temperature of the system? °C (b) What is the mass of unmelted ice, if any, when the system is at equilibrium?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT