Question

4) Consider a car traveling with speed  around a curve of radius r . a)...

4) Consider a car traveling with speed  around a curve of radius r . a) Derive an equation that best expresses the angle () at which a road should be banked so that no friction is required. b) If the speed signpost says 42 mile/h, and the angle of the bank is 18°, what is the radius (r) of the curve. (2 points)

You must show how tan is derived mathematically.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1000-kg car is traveling around a curve having a radius of 100 m that is...
A 1000-kg car is traveling around a curve having a radius of 100 m that is banked at an angle of 15.0°. If 30m/s is the maximum speed this car can make the curve without sliding, what is the coefficient of friction between the road and the tires?
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
An auto mobile traveling at 60 mph rounds a curve banked at 10 degrees. The radius...
An auto mobile traveling at 60 mph rounds a curve banked at 10 degrees. The radius of the curve is 200 ft. (a) What is the minimum coefficient of friction that will keep the car on the road? (b) What would the bank angle need to be in order for the car to stay on the road without any friction?
A car merges onto the freeway on a banked curve. The car maintains a constant velocity...
A car merges onto the freeway on a banked curve. The car maintains a constant velocity 푣 while driving on the curve, which is banked at angle theta and has a radius of curvature R. The car has mass m and the coefficient of static friction between the car’s tires and the road is meu(s). What is the maximum and minimum speed that the car can go around the banked curve without slipping? Hint: The car tends to slip up...
A curve of radius 20 m is banked so that a 1000 kg car traveling at...
A curve of radius 20 m is banked so that a 1000 kg car traveling at 60 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . ? Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.2. Answer in units of...
1) A car is traveling around a circular portion of road banked at an incline of...
1) A car is traveling around a circular portion of road banked at an incline of 20 degrees to the horizonal. If the radius of the turn is 75 m and the coefficient of static friction is 0.75 A) What is the maximum speed the car can take the turn without losing traction? B) At what speed would the static friction be zero?
A curve of radius 30 m is banked so that a 950-kg car traveling at 25...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25 miles per hour can round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction between the snowy road...
A 1000 kg car rounds curve of radius 75 m banked at an angle of 15...
A 1000 kg car rounds curve of radius 75 m banked at an angle of 15 degree, if the car is traveling at 100 km/h, will a friction force be required? If so, how much and what direction?
A car has a velocity of 40.0 m/s and a mass of 2000.0 kg. A curve...
A car has a velocity of 40.0 m/s and a mass of 2000.0 kg. A curve has a radius of 80.0 m. The curve has a bank angle of 30.0 degrees. The coefficient of friction between the tires and the road is 0.92. Would the car have enough Fc to make it around the curve? Prove mathematically.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT