Question

4) Consider a car traveling with speed around a curve of radius r . a) Derive an equation that best expresses the angle () at which a road should be banked so that no friction is required. b) If the speed signpost says 42 mile/h, and the angle of the bank is 18°, what is the radius (r) of the curve. (2 points)

You must show how tan is derived mathematically.

Answer #1

A 1000-kg car is traveling around a curve having a radius of 100
m that is banked at an angle of 15.0°. If 30m/s is the maximum
speed this car can make the curve without sliding, what is the
coefficient of friction between the road and the tires?

A curve of radius 20 m is banked so that a 1100 kg car traveling
at 30 km/h can round it even if the road is so icy that the
coefficient of static friction is approximately zero. The
acceleration of gravity is 9.81 m/s 2 .
Find the minimum speed at which a car can travel around this
curve without skidding if the coefficient of static friction
between the road and the tires is 0.3. Answer in units of m/s.

A car rounds a 50 meter radius curve that is banked such that a
car rounding it does not need friction at a speed of 12 m/s. What
is the bank angle of the road?
The coefficient of kinetic friction between the tires and the
road is 0.5 and the coefficient of static friction between the
tires and the road is 0.8. If the same road were flat (instead of
banked), determine the maximum speed with which the coar could...

An auto mobile traveling at 60 mph rounds a curve banked at 10
degrees. The radius of the curve is 200 ft. (a) What is the minimum
coefficient of friction that will keep the car on the road? (b)
What would the bank angle need to be in order for the car to stay
on the road without any friction?

A car merges onto the freeway on a banked curve. The car
maintains a constant velocity 푣 while driving on the curve, which
is banked at angle theta and has a radius of curvature R. The car
has mass m and the coefficient of static friction between the car’s
tires and the road is meu(s). What is the maximum and minimum speed
that the car can go around the banked curve without slipping? Hint:
The car tends to slip up...

A curve of radius 20 m is banked so that a 1000 kg car traveling
at 60 km/h can round it even if the road is so icy that the
coefficient of static friction is approximately zero. The
acceleration of gravity is 9.81 m/s 2 . ? Find the minimum speed at
which a car can travel around this curve without skidding if the
coefficient of static friction between the road and the tires is
0.2. Answer in units of...

1) A car is traveling around a circular portion of road banked
at an incline of 20 degrees to the horizonal. If the radius of the
turn is 75 m and the coefficient of static friction is 0.75 A) What
is the maximum speed the car can take the turn without losing
traction? B) At what speed would the static friction be zero?

A curve of radius 30 m is banked so that a 950-kg car traveling
at 25 miles per hour can round it even if the road is so icy that
the coefficient of static friction is approximately zero. You are
commissioned to tell the local police the range of speeds at which
a car can travel around this curve without skidding. Neglect the
effects of air drag and rolling friction. If the coefficient of
static friction between the snowy road...

A 1000 kg car rounds curve of radius 75 m banked at an angle of
15 degree, if the car is traveling at 100 km/h, will a friction
force be required? If so, how much and what direction?

A car has a velocity of 40.0 m/s and a mass of 2000.0 kg. A
curve has a radius of 80.0 m. The curve has a bank angle of 30.0
degrees. The coefficient of friction between the tires and the road
is 0.92. Would the car have enough Fc to make it around the curve?
Prove mathematically.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 13 minutes ago

asked 19 minutes ago

asked 19 minutes ago

asked 21 minutes ago

asked 23 minutes ago

asked 26 minutes ago

asked 27 minutes ago

asked 33 minutes ago

asked 35 minutes ago