Question

A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of...

A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m . When the object is a distance 1.25×10−2 m from its equilibrium position, it is observed to have a speed of 0.300 m/s .

Part A) What is the total energy of the object at any point of its motion?

E = ? J

Part B) What is the amplitude of the motion?

A = ? m

Part C) What is the maximum speed attained by the object during its motion?

vmax = ? m/s

Homework Answers

Answer #1

(B) angular velocity, ω = √(k/m) = √(305N/m / 0.155kg) .. ..ω = 44.36 rad/s

shm velocity ,v = ω√(r² - x²) .. . x = displacement, r = amplitude (radius)
(v/ω)² = r² - x²
r² = (v/ω)² + x²
r² = (0.300m/s / 44.36rad/s)² + (0.0125m)² = 2.019^-4
Amplitude r = √2.019^-4) .. .. ►r = 1.42^-2 m

(A) shm total energy, E = ½m(ωr)²
Et = ½ x 0.155kg x (44.36 x 1.42^-2)² .. .. ►Et = 3.0^-2 J

(C) v(max) occurs at displacement x = 0 (equilibrium position)
v = ω√(r² - x²) → v(max) = ωr .. .. r = amplitude
v(max) = (44.36rad/s x 1.42^-2 m) .. .. ►v(max) = 0.62 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A toy of mass 0.150 kg is undergoing simple harmonic motion (SHM) on the end of...
A toy of mass 0.150 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 300 N/m . When the object is a distance 1.25×10?2 m from its equilibrium position, it is observed to have a speed of 0.305 m/s . a) What is the total energy of the object at any point of its motion? b) What is the amplitude of the motion? c) What is the maximum speed attained by the...
A toy is undergoing SHM on the end of a horizontal spring with force constant 308...
A toy is undergoing SHM on the end of a horizontal spring with force constant 308 N/m . When the toy is 0.130 m from its equilibrium position, it is observed to have a speed of 3 m/s and a total energy of 5.2 J . Part A Find the mass of the toy. Part B Find the amplitude of the motion. Part C Find the maximum speed attained by the object during its motion.
A toy is undergoing SHM on the end of a horizontal spring with force constant 300...
A toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/m . When the toy is 0.140 m from its equilibrium position, it is observed to have a speed of 3 m/s and a total energy of 5.2 J . A) find the mass of the toy. B) Find the amplitude of the motion C) Find the maximum speed attained by the object in motion.
A toy is undergoing SHM on the end of a horizontal spring with force constant 300...
A toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/m . When the toy is 0.140 m from its equilibrium position, it is observed to have a speed of 3 m/s and a total energy of 5.2 J . a) find the mass of the toy in kg b) find the amplitude of the motion c) find the max speed attained by object during its motion
A 150 g toy is undergoing SHM on the end of a horizontal spring with force...
A 150 g toy is undergoing SHM on the end of a horizontal spring with force constant of 300.0 N/m. When the object is 1.20 cm from its equilibrium position, it is observed to have a speed of 0.300 m/s. Find the total energy of the object at any point in its motion, the amplitude of the motion, and the maximum speed obtained by the object during its motion.
An object with mass 2.3 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 2.3 kg is executing simple harmonic motion, attached to a spring with spring constant 330 N/m . When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.50 m/s . Part A Calculate the amplitude of the motion. Part B Calculate the maximum speed attained by the object.
An object with mass 3.6 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 3.6 kg is executing simple harmonic motion, attached to a spring with spring constant 320 N/m . When the object is 0.025 m from its equilibrium position, it is moving with a speed of 0.40 m/s. Part A: Calculate the amplitude of the motion. Part B: Calculate the maximum speed attained by the object.
An object with mass 2.8 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 2.8 kg is executing simple harmonic motion, attached to a spring with spring constant 320 N/m . When the object is 0.021 m from its equilibrium position, it is moving with a speed of 0.65 m/s . Calculate the amplitude of the motion. Calculate the maximum speed attained by the object.
An object with mass 3.8 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 3.8 kg is executing simple harmonic motion, attached to a spring with spring constant 260 N/mN/m . When the object is 0.017 mm from its equilibrium position, it is moving with a speed of 0.65 m/s . Calculate the amplitude of the motion. Calculate the maximum speed attained by the object.
5. A mass attached to a spring undergoes a simple harmonic motion (SHM) on a frictionless...
5. A mass attached to a spring undergoes a simple harmonic motion (SHM) on a frictionless horizontal surface. Suppose you increase the amplitude of the SHM, which of the following quantities DOES (DO) NOT increase? (There can be more than one answer) 1. The period of the SHM 2. The maximum acceleration 3. The frequency of the SHM 4. The maximum kinetic energy 5. The maximum spring potential energy 6. The maximum speed.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT