Question

On the Wheel of Fortune game show, a solid wheel (of radius 7.4 m and mass...

On the Wheel of Fortune game show, a solid wheel (of radius 7.4 m and mass 10 kg) is given an initial counterclockwise angular velocity of +1.11 rad/s. It then smoothly slows down and stops after rotating through 3/4 of a turn.

(a) Find the frictional torque that acts to stop the wheel.
=  N · m

(b) Assuming that the torque is unchanged, but the mass of the wheel is halved and its radius is doubled. How will this affect the angle through which it rotates before coming to rest? (Make sure you can reason this with proportionalities.)

increase, decrease or stay the same?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
On the Wheel of Fortune game show, a solid wheel (of radius 7.5 m and mass...
On the Wheel of Fortune game show, a solid wheel (of radius 7.5 m and mass 10 kg) is given an initial counterclockwise angular velocity of +1.12 rad/s. It then smoothly slows down and stops after rotating through 3/4 of a turn. (a) Find the frictional torque that acts to stop the wheel. vector tau = 112.3 Incorrect: Your answer is incorrect. 74.9 was also incorrect N · m i need a quick answer!!!!
A 0.15 kg circular grinding wheel of radius 0.076 m rotates counterclockwise at 565 rad/s while...
A 0.15 kg circular grinding wheel of radius 0.076 m rotates counterclockwise at 565 rad/s while operating. You turn the grinder off and firmly but slowly press a block of wood directly onto the wheel so that the wheel steadily slows to halt in 5.0 s. What is the magnitude of the average torque exerted on the wheel by the block of wood as it steadily slows to a halt? (Note: Idisk = (1/2) M R2 .)
A potter’s wheel, a thick stone disk of radius 0.500 m and mass 100 kg, is...
A potter’s wheel, a thick stone disk of radius 0.500 m and mass 100 kg, is freely rotating at 70.0 rev/min. The potter can stop the wheel by pressing a wet rag against the rim and exerting a radially inward force of 35.0 N. If the applied force slows the wheel down with an angular acceleration of 0.875rad/s2 , calculate the torque acting on the wheel and the coefficient of kinetic friction between the wheel and the rag
A bicycle wheel, of radius 0.3100 m and mass 2.000 kg (concentrated on the rim), is...
A bicycle wheel, of radius 0.3100 m and mass 2.000 kg (concentrated on the rim), is rotating at 4.110 rev/s. After 41.00 s the wheel comes to a stop because of friction. What is the magnitude of the average torque due to frictional forces? N · m
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an...
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an angular speed of 1224 rev/min. when the motor that turns it is shut off. The wheel slows uniformly to a stop after 48 seconds due to frictional forces. Find: a. angular accleleration b. number of revolutions during the 48 seconds c. frictional torque that caused the wheel to slow to a stop d. wheels initial kinetic energy e. frictional power
A uniform disk of mass M and radius R is initially rotating freely about its central...
A uniform disk of mass M and radius R is initially rotating freely about its central axis with an angular speed of ω, and a piece of clay of mass m is thrown toward the rim of the disk with a velocity v, tangent to the rim of the disk as shown. The clay sticks to the rim of the disk, and the disk stops rotating. 33. What is the magnitude of the total angular momentum of the clay-disk system...
At t = 2.55 s a point on the rim of a 0.230-m-radius wheel has a...
At t = 2.55 s a point on the rim of a 0.230-m-radius wheel has a tangential speed of 53.5 m/s as the wheel slows down with a tangential acceleration of constant magnitude 12.0 m/s2. (a) Calculate the wheel's constant angular acceleration. [-52 rad/s2] (b) Calculate the angular velocities at t = 2.55 s and t = 0. ω2.55 s = [ ] rad/s ω0 = [ ] rad/s (c) Through what angle did the wheel turn between t =...
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial...
1. A disk-shaped wheel, whose mass is 1.75kg and radius 0.6m, is rotating at an initial angular speed of 30 rad / sec. It is brought to rest with constant angular acceleration. If the wheel spins 200 rad before stopping: a) Determine the angular acceleration of the wheel. b) The time it takes you to stop. c) The initial linear speed of a point on the edge of the wheel. d) The initial tangential acceleration of a point on the...
A student holds a bike wheel and starts it spinning with an initial angular speed of...
A student holds a bike wheel and starts it spinning with an initial angular speed of 7.0 rotations per second. The wheel is subject to some friction, so it gradually slows down. In the 10-s period following the inital spin, the bike wheel undergoes 60.0 complete rotations. Assuming the frictional torque remains constant, how much more time ?ts will it take the bike wheel to come to a complete stop? The bike wheel has a mass of 0.725 kg and...
A 0.60 m radius wheel starting from rest rotates through an angle θ. If it is...
A 0.60 m radius wheel starting from rest rotates through an angle θ. If it is accelerating at a constant angular acceleration of 2.40 rad/s2, determine      (a) the angular velocity in rad/s of the wheel at the end of a 5.00 second interval.      (b) how many revolutions has the wheel rotated by the end of the 5.00 second interval.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT