Question

Explain the effect that changing each of the following factors has on the period of a...

Explain the effect that changing each of the following factors has on the period of a mass spring system: a) amplitude b) spring constant c) mass

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) Has the period changed as a result of changing the amplitude of release? If yes,...
a) Has the period changed as a result of changing the amplitude of release? If yes, explain how. b) Has the period changed as a result of changing the mass? If yes, explain how. c) Has the period changed as a result of changing the spring constant? If yes, explain how. d) Summarize findings from a) to c) stating the parameters that affect the period of the weighted spring as well as those parameters that do not have an effect....
Which of the following would not affect the period of a simple harmonic oscillator? A. changing...
Which of the following would not affect the period of a simple harmonic oscillator? A. changing a pendulum's length B. changing the mass attached to a spring C. changing the amplitude of oscillations D. changing out the spring while keeping the same mass
1) How does the amplitude of vibration affect the time period of vibration for a spring-mass...
1) How does the amplitude of vibration affect the time period of vibration for a spring-mass system? a)The period decreases linearly as amplitude increases b)Time period increases as the square root of the amplitude c)No effect d)Time period increases linearly with the amplitude 2)What will be the value of the spring constant, if a mass of 1.1 kg attached to a spring stretches it by 16 cm. Ignore the mass of the spring and its original length. 3)What will be...
a) Has the period changed as a result of changing the angle of release? If so,...
a) Has the period changed as a result of changing the angle of release? If so, explain how. b) Has the period changed as a result of changing the mass? If so, explain how. c) Has the period changed as a result of changing the length of the pendulum? If so, explain how. d) Has the period changed as a result of changing the acceleration due to gravity? If so, explain how. e) Summarize findings from a) to d) by...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period...
Horizontal Block-Spring mass system, x= 2.0m Sin (3.0t) t is in seconds. (a) find the period and frequency (b) find the speed, position and acceleration at t=2.4. (c) find the mechanical energy of the system, spring constant and amplitude. Thank you in advance.
Which of the following statements concerning a mass on a spring undergoing simple harmonic motion is...
Which of the following statements concerning a mass on a spring undergoing simple harmonic motion is false. a) If the mass is doubled and the spring constant is doubled the period of motion stays the same. b) If the amplitude is doubled the period of motion is doubled. c) If the mass is quadrupled then the period of motion is doubled. d) If the amplitude is doubled the period of motion stays the same. e) If the spring constant is...
A damped mass-spring oscillator loses 6% of its energy during each cycle. a.) The period is...
A damped mass-spring oscillator loses 6% of its energy during each cycle. a.) The period is 6.7 s, and the mass is 0.8 kg. What is the value of the damping constant? b=? kg/s b.) If the motion is started with an initial amplitude of 0.27 m0.27 m, how many cycles elapse before the amplitude reduces to 0.11 m? t/T=?
A damped mass-spring oscillator loses 2% of its energy during each cycle. (a) The period is...
A damped mass-spring oscillator loses 2% of its energy during each cycle. (a) The period is 3.0 s, and the mass is 0.50 kg. What is the value of the damping constant? (b) If the motion is started with an initial amplitude of 0.92 m, how many cycles elapse before the amplitude reduces to 0.75 m? (c) Would it take the same number of cycles to reduce the amplitude from 0.75 m to 0.50 m? No calculations are needed for...
When a mass of m = 254 g is attached to a spring and the mass-spring...
When a mass of m = 254 g is attached to a spring and the mass-spring system is set into oscillatory motion, the period of the motion is T = 0.427 s. Determine the following. (a) frequency of the motion in hertz Hz (b) force constant of the spring N/m (c) amplitude of the oscillation, if the total energy of the oscillating system is 0.288 J m
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT