Question

8%) Problem 15:   A rod of mass M = 3.5 kg and length L can rotate...

8%) Problem 15:   A rod of mass M = 3.5 kg and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 55 g, moving with speed v = 6.68 m/s, strikes the rod at angle θ = 59° from the normal at a distance D = 2/3 L, where L = 1.25 m, from the point of rotation and sticks to the rod after the collision.
  33% Part (a) What is the initial angular momentum of the ball, in kilogram meters squared per second, right before the collision relative to the pivot point of the rod?
Li = 0.16     ✔ Correct!

  33% Part (b) What is the total moment of inertia If with respect to the hinge, of the rod-ball-system after the collision, in terms of the variables from the problem statement?
If = ( ( M L2 )/3 ) + m ( 2 L/3 )2     ✔ Correct!
  33% Part (c) What is the angular speed ωf of the system immediately after the collision, in radians per second?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball with a mass of 3.2 kg is attached to the other end of the rod. The rod-and ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) What was the vertical force used to hold the...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about...
A cylindrical rod of mass 0.82 kg and length 1.88 m is free to rotate about a pivot fixed at one end. A ball (mass 3.2 kg) is attached to the other end of the rod. The rod-and- ball system is held in a horizontal position by a vertical force that acts 1.41 m from the pivot. The force is then removed, and the rod-and-ball swings down. (a) (4 points) What was the vertical force used to hold the system...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass, 54 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.33 kg wad of wet putty drops onto one of the balls with a speed of 3.7 m/sec and sticks to it. 1)What is the ratio of the magnitude of angular momentum of the entire...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the ends of a thin rod of negligible mass and length 60 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 126 gdrops onto one of the balls, with a speed 2.6 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? What is...
The figure shows an overhead view of a 1.80 kg plastic rod of length 1.20 m...
The figure shows an overhead view of a 1.80 kg plastic rod of length 1.20 m on a table. One end of the rod is attached to the table, and the rod is free to pivot about this point without friction. A disk of mass 33.0 g slides toward the opposite end of the rod with an initial velocity of 39.5 m/s. The disk strikes the rod and sticks to it. After the collision, the rod rotates about the pivot...
Two Balls and a Thin Rod Two balls of mass 3.29 kg are attached to the...
Two Balls and a Thin Rod Two balls of mass 3.29 kg are attached to the ends of a thin rod of negligible mass and length 72 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 127 g drops onto one of the balls, with a speed 2.5 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? 1.31×10-1...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...