Question

A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...

A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. After being disconnected from the battery, inserting a dielectric with ? will decrease U. 2.With the capacitor connected to the battery, decreasing d increases C. 3.After being disconnected from the battery, decreasing d increases U. 4.After being disconnected from the battery, inserting a dielectric with ? will increase V. 5. With the capacitor connected to the battery, inserting a dielectric with ? will increase C. 6.After being disconnected from the battery, increasing d decreases V.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. After being disconnected from the battery, inserting a dielectric with κ will increase U. After being disconnected from the battery, inserting a dielectric with κ...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V Volts. (C is the capacitance and U is the stored energy.) Select true or false for each statement. 1)With the capacitor connected to the battery, inserting a dielectric with κ > 1 will decrease U. 2)With the capacitor connected to the battery, decreasing d increases C. 3)After being disconnected from the battery, decreasing d...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor is then disconnected and the separation between the plates is halved in such a way that so charge leaks off As the plate separation is being halved which of the following parameters remains constant? An air filled k=1 ideal parallel plate capacitor has a capacitance of C. If the area of the plates is doubled insert a dielectric material k=2 and the distance between...
A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential...
A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential difference ε. While still connected to the battery, the plate separation is increased to 2d. a) Does the potential difference across the capacitor change as the separation increases? If so, then by what factor? If not, then why not? b) Does the capacitance change as the separation increases? If so, then by what factor? If not, then why not? c) Does the capacitor charge...
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm...
A parallel plate capacitor of area A = 30 cm2 and separation d = 5 mm is charged by a battery of 60-V If the air between the plates is replaced by a dielectric of k= 4, but the battery disconnected before the dielectric inserted, 1) Find the capacitance of the capacitor. 2) What is the charge on the capacitor? 3) What is the energy stored in the capacitor? please explain. Thank you
A parallel plate capacitor with area A and separation d, has a dielectric inserted in half...
A parallel plate capacitor with area A and separation d, has a dielectric inserted in half of its volume. This capacitor is connected to a batter of voltage V and is fully charged. (second part is related to first so I had to post this as one question...I'm sorry) What is the capacitance of the capacitor? Force needed to start to pull out the dielectric? How much energy is stored in this dielectric? If we did manage to pull out...
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted...
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted between the plates, what happens to (a) the capacitance and (b) the voltage?
A parallel plate capacitor in air is constructed with a plate area of 7.75cm2 and a...
A parallel plate capacitor in air is constructed with a plate area of 7.75cm2 and a plate separation of 0.664mm. A) Determine the value of the capacitance of this parallel plate capacitor. B) This capacitor is placed across a 21.0 V battery and allowed to fully charge. What is the value of this charge with included units. C) When fully charged, what is the energy stored inside the capacitor? D) With the battery still connected, a pyrex glass dielectric material...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A- Find the energy U1 of the dielectric-filled capacitor. Part B- The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Part B The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...