Question

Two loudspeakers on a concert stage are vibrating in phase. A listener is 47.0 m from...

Two loudspeakers on a concert stage are vibrating in phase. A listener is 47.0 m from the left speaker and 33.1 m from the right one. The listener can respond to all frequencies from 20 to 20 000 Hz, and the speed of sound is 343 m/s. What is the lowest frequency that can be heard loudly due to constructive interference?

Homework Answers

Answer #1

let f is the lowest frequency of the sound wave that can be heard.

use, v = lamda*f

==> lamda = v/f

for minimum f, lamda must be maximum

lamda_max = v/f_min

= 343/20

= 17.15

given

r1 = 47.0 m
r2 = 33.1 m

path diffrence for constaructive intereference,

r2 - r1 = n*lamda

47 - 33.1 = n*lamda

13.9 = n*lamda

lamda = 13.9/n

v/f = 13.9/n

343/f = 13.9/n

==> f = 343*n/13.9

f = n*24.676

for minmum value of n = f_min/24.676

= 20/24.676

= 0.8105

so minumum value of n = 1

f = 1*24.7

= 24.7 hz

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two loudspeakers on a concert stage are vibrating in phase. A listener 50.5 m from the...
Two loudspeakers on a concert stage are vibrating in phase. A listener 50.5 m from the left speaker and 26.0 m from the right one. the listener can respond to all frequencies from 20 to 20 000Hz, and the speed of sound is 343 m/s. What are the two lowest frequencies that can be heard loudly due to constructive interference?
Refer to Interactive Solution 17.9 to review a method by which this problem can be solved....
Refer to Interactive Solution 17.9 to review a method by which this problem can be solved. Two loudspeakers on a concert stage are vibrating in phase. A listener is 47.4 m from the left speaker and 34.1 m from the right one. The listener can respond to all frequencies from 20 to 20 000 Hz, and the speed of sound is 343 m/s. What is the lowest frequency that can be heard loudly due to constructive interference?
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one...
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one speaker and 3.10 m from the other. What is the third lowest frequency at which destructive interference will occur at this point? The speed of sound in air is 339 m/s. (answer in Hz)
Speakers A and B are vibrating in phase. They are directly facing each other, are 8.6...
Speakers A and B are vibrating in phase. They are directly facing each other, are 8.6 m apart, and are each playing a 79.0 Hz tone. The speed of sound is 343 m/s. On the line between the speakers there are three points where constructive interference occurs. What is the distance of the farthest point from speaker A? m
Two loudspeakers are separated by a distance of 7.6 m. A listener sits directly in front...
Two loudspeakers are separated by a distance of 7.6 m. A listener sits directly in front of one speaker at a distance of 6.6 m so that the two speakers and the listener form a right triangle. Find the lowest frequency for which the path difference from the speakers to the listener is an odd number of half-wavelengths. Assume the speed of sound is 340 m/s. Find the second lowest frequency for which the path difference from the speakers to...
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from...
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from one speaker and 3.70 m from the other. What is the lowest acceptable frequency at which the person will hear destructive interference? The speed of sound in air is 346 m/s.
Two loudspeakers are 1.50 m apart. A person stands 3.00 m from one speaker and 3.60...
Two loudspeakers are 1.50 m apart. A person stands 3.00 m from one speaker and 3.60 m from the other. a) What is the lowest frequency at which destructive interference will occur at this point if the speakers are in phase? b) Calculate two other frequencies that also result in destructive interference at this point (give the next two highest). Let T = 20 degrees Celsius.
Two in-phase loudspeakers are 3.0 m apart. They emit sound with a frequency of 950Hz. A...
Two in-phase loudspeakers are 3.0 m apart. They emit sound with a frequency of 950Hz. A microphone is placed half-way between the speakers and then moved along the line joining the two speakers until the first point of destructive interference is found. At what distance from that midpoint is that first point? The speed of sound in air is 343 m/s. A) 0.09 m B) 0.18 m C) 0.24m D) 0.36m E) There is no point in that line where...
Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of...
Two loudspeakers are placed at either end of a gymnasium, both pointing toward the center of the gym and equidistant from it. The speakers emit 276 Hz sound that is in phase. An observer at the center of the gym experiences constructive interference. Part A How far toward either speaker must the observer walk to first experience destructive interference?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT